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RESUMO  
 
 

A Amazônia abriga a maior floresta tropical contínua do mundo e desempenha um 
papel fundamental na regulação do clima global. No entanto, a ação do fogo na região 
representa um desafio urgente, com potenciais danos à biodiversidade, ao meio 
ambiente e às comunidades locais. Em 2022, o Brasil testemunhou uma perda 
alarmante de 16,3 milhões de hectares de floresta devido a atividades relacionadas 
ao fogo, e a Reserva Extrativista Chico Mendes (RECM), no estado do Acre, destaca-
se como a segunda unidade de conservação federal mais ameaçada por incêndios.  
Por se caracterizar como uma importante área de proteção, torna-se crucial encontrar 
métodos eficazes para a prevenção e gerenciamento de áreas com risco de fogo. 
Nesse contexto, a inteligência artificial, especialmente as Redes Neurais Artificiais 
(RNA), têm se destacado como um modelo eficaz de predição em diversas áreas. O 
presente estudo o padrão de ocorrência do fogo, sua relação com o desmatamento e 
outras variáveis na RECM, assim desenvolver uma RNA capaz de prever a ocorrência 
de focos de calor na reserva de modo a auxiliar na tomada de decisão no que se refere 
à mitigação dos efeitos das mudanças climáticas globais. Para isso, foram utilizadas 
técnicas de sensoriamento remoto, densidade de Kernel e análise de correlação 
espacial de Pearson e Moran de variáveis propulsoras com os focos de calor. Na 
construção da RNA foi utilizado o software R Studio 4.2.3, em conjunto com o pacote 
"keras" e o framework "TensorFlow", para a construção de uma RNA do tipo Multilayer 
Perceptron, utilizando o algoritmo de retropropagação de aprendizagem. Resultados 
indicaram que as variáveis desmatamento, altitude, distância de ramais e rodovias 
juntamente com fatores climáticos, como vento, umidade relativa, umidade do solo, 
precipitação e irradiação solar, apresentaram correlação significativa com a ocorrência 
de incêndios na reserva. Os resultados da RNA construídas revelaram uma acurácia 
do modelo de 74%, uma sensibilidade de 76% e especificidade de 71%. Além disso, 
a taxa de verdadeiros positivos alcançou 81%, enquanto a de verdadeiros negativos 
foi de 64%. Até este ponto, os resultados obtidos sinalizam uma base sólida do modelo 
de RNA, indicando seu potencial para contribuir no monitoramento de focos de calor 
em áreas de relevância ambiental. Os resultados obtidos demonstraram o potencial 
promissor da RNA na identificação de áreas propícias a focos de calor, fornecendo 
uma ferramenta valiosa para a prevenção e gestão desses incêndios. 
 
 
Palavras-chave: Reserva Extrativista Chico Mendes, fogo, Redes Neurais Artificiais 

 
 
 
 
 
 
 
 
 

 
 
 

 



 
 

ABSTRACT 
 
 

The Amazon is home to the largest continuous rainforest in the world and plays a key 
role in regulating the global climate. However, the action of fire in the region represents 
an urgent challenge, with potential damage to biodiversity, the environment and local 
communities. In 2022, Brazil witnessed an alarming loss of 16.3 million hectares of 
forest due to fire-related activities, and the Chico Mendes Extractive Reserve (RECM), 
in the state of Acre, stands out as the second federal conservation unit most threatened 
by fires. As it is characterized as an important protection area, it is crucial to find 
effective methods for the prevention and management of areas at risk of fire. In this 
context, artificial intelligence, especially Artificial Neural Networks (ANN), have stood 
out as an effective model of prediction in several areas. The present study the pattern 
of occurrence of fire, its relationship with deforestation and other variables in the 
RECM, thus developing an ANN capable of predicting the occurrence of hot spots in 
the reserve in order to assist in decision making regarding mitigation of the effects of 
global climate change. For this, remote sensing techniques, Kernel density and 
Pearson and Moran spatial correlation analysis of driving variables with hot spots were 
used. In the construction of the ANN, the R Studio 4.2.3 software was used, together 
with the "keras" package and the "TensorFlow" framework, for the construction of a 
Multilayer Perceptron type ANN, using the learning backpropagation algorithm. Results 
indicated that the variables deforestation, altitude, distance from branches and roads, 
together with climatic factors, such as wind, relative humidity, soil humidity, 
precipitation and solar radiation, showed a significant correlation with the occurrence 
of fires in the reserve. The results of the constructed ANN revealed a model accuracy 
of 74%, a sensitivity of 76% and specificity of 71%. Furthermore, the true positive rate 
reached 81%, while the true negative rate was 64%. Up to this point, the obtained 
results signal a solid basis for the ANN model, indicating its potential to contribute to 
the monitoring of hot spots in areas of environmental relevance. The results obtained 
demonstrate the promising potential of RNA in identifying areas conducive to hot spots, 
providing a valuable tool for the prevention and management of these fires. 
 
Keywords: Chico Mendes Extractive Reserve, fire, Artificial Neural Networks 
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1. INTRODUÇÃO GERAL 

 
A intensificação dos incêndios florestais é uma questão de grande importância 

científica e ambiental. Segundo Tyukavina et al. (2022), cerca de 9,3 milhões de 

hectares foram incendiados em todo o mundo apenas no ano de 2021, resultando em 

uma perda de aproximadamente um terço da cobertura vegetal. Os incêndios 

florestais são reconhecidos como um dos principais agentes de degradação das 

florestas, tanto de forma direta quanto indireta, através do desequilíbrio dos 

ecossistemas (Santos et al., 2010). Além disso, os incêndios globais são responsáveis 

por cerca de 1,8 gigatoneladas de emissão de dióxido de carbono (CO2) por ano na 

atmosfera (BO ZHENG et al., 2021). 

O Brasil é considerado um dos principais emissores de CO2 provenientes dos 

incêndios florestais, especialmente na região amazônica (SOUZA et al., 2012). As 

atividades econômicas de madeireira e agropecuária são apontadas como as 

principais responsáveis pelo aumento dos incêndios florestais na Amazônia (Batista, 

2004). 

As consequências dos incêndios florestais são de grande impacto ao 

ecossistema e incluem a degradação do solo, a perda da biodiversidade e a quebra 

do ciclo hidrológico (SAMPAIO, 2006). Além disso, os incêndios florestais também 

apresentam riscos significativos para a saúde humana, devido às emissões de gases 

tóxicos que podem comprometer o sistema respiratório e causar problemas 

cardiorrespiratórios (RIBEIRO E ASSUNÇÃO, 2002). 

As Unidades de Conservação (UCs) são consideradas como uma das medidas 

mais eficazes para combater o desmatamento e os incêndios florestais na Amazônia 

(BARBER et al., 2014). No entanto, Sampaio (2006) alerta para o aumento dos 

incêndios florestais dentro das UCs, devido à falta de serviços estruturados de 

prevenção e combate aos incêndios. 

No estado do Acre, a Reserva Extrativista Chico Mendes (RECM) entrou para 

o grupo das 50 unidades de conservação críticas da Amazônia em 2015 (Araújo et al., 

2015), e em 2020 registrou a maior área queimada (27.500 ha) entre as unidades de 

conservação do estado (SILVA et al., 2020). 

A determinação de áreas com maior risco de incêndio é fundamental para o 

planejamento eficaz de prevenção e controle de incêndios florestais. A análise das 
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condições climáticas e ambientais propícias às queimadas permite estabelecer 

estratégias para prevenir e combater incêndios, bem como conscientizar a população 

local sobre os riscos envolvidos e, em casos extremos, restringir o acesso a áreas de 

alto risco (NUNES, 2006). 

A utilização de redes neurais artificiais (RNAs) na modelagem de incêndios 

apresenta vantagens significativas, tais como a capacidade de serem aplicadas em 

sistemas sem soluções específicas, não necessitando de conhecimento dos 

processos físicos causadores do fenômeno, minimizando os erros de medição, 

possibilitando o treinamento contínuo da rede, permitindo a otimização entre os dados 

de entrada e saída e permitindo modelar processos com séries temporais de entrada 

e saída (HAYKIN, 2001).  

Diante disso, este estudo tem como objetivo caracterizar e mapear as regiões 

de risco de incêndio na Reserva Extrativista Chico Mendes (RECM) utilizando um 

modelo de previsão baseado em RNAs de treinamento supervisionado, considerando 

variações de níveis de variáveis ambientais (número de focos e área queimada) e 

meteorológicas (temperatura do ar e do solo, umidade relativa do ar, quantidade de 

água no solo, velocidade do vento e radiação solar). Este estudo busca responder às 

seguintes perguntas: 1) Como se dá a distribuição de focos de calor e sua relação 

com o desmatamento na RECM? 2) Qual o desempenho do método de RNAs aplicado 

à previsão de risco de incêndio? 3) Qual a localização e dimensão das áreas que têm 

maior risco de incêndios na RECM? 4) Os riscos estão mais associados a fatores 

humanos ou ambientais? 5) Como o uso de dados de satélites auxilia na prevenção 

de incêndios na RECM? 

Os resultados obtidos através deste estudo permitiram o estabelecimento de 

áreas prioritárias para o planejamento de atividades logísticas das equipes de 

combate a incêndios, visando minimizar os danos causados pelos incêndios e 

direcionar políticas públicas de incentivo e monitoramento de fogo e desmatamento 

zero. 
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2. ESTRUTURA DA DISSERTAÇÃO  

 

A presente dissertação está estruturada em três capítulos. 

O primeiro capítulo consiste em uma revisão bibliográfica, onde se aborda a 

problemática dos incêndios em florestas, bem como os principais fatores que 

propiciam sua ocorrência nesses ambientes. Além disso, é discutido o contexto das 

Reservas Extrativistas (Resex), suas etapas de criação e seus objetivos, com foco 

especial nas Resex localizadas no estado do Acre. Nessa perspectiva, explora-se a 

razão pela qual a Reserva Extrativista Chico Mendes, no Acre, é considerada a mais 

ameaçada em termos de proteção ambiental, principalmente em relação às áreas 

sujeitas a queimadas. Por fim, são apresentadas as Redes Neurais Artificiais e as 

principais abordagens para sua construção. 

  No segundo capítulo, dedicou-se a uma análise minuciosa do regime de 

fogo da Reserva Extrativista Chico Mendes (REMC), com foco na sua evolução 

histórica ao longo do tempo. Além disso, investigaram-se as regiões da reserva mais 

afetadas pelos incêndios. Nesse contexto, buscou-se identificar e examinar as 

principais variáveis que atuam como propulsoras do fogo dentro da RECM. Para tanto, 

realizou-se uma análise de correlação dessas variáveis, empregando o coeficiente de 

Pearson, a fim de compreender melhor as relações existentes entre elas. 

Adicionalmente, foram conduzidas análises de correlação geoespacial de Moran, com 

o objetivo de identificar possíveis padrões espaciais nas ocorrências de fogo. 

No capítulo três, foi desenvolvida uma Rede Neural Artificial (RNA) com o 

objetivo de prever os focos de calor dentro da Reserva Extrativista Chico Mendes 

(RECM). A RNA foi implementada na linguagem R, utilizando o software R Studio 

4.2.3 em conjunto com os pacotes "keras" e "TensorFlow", com a finalidade de 

construir um modelo do tipo Multilayer Perceptron (MLP) utilizando o algoritmo de 

backpropagation. Os dados utilizados para a construção da rede foram coletados no 

período de 2016 a 2019, enquanto os dados de 2020 foram reservados para a 

validação do modelo. 
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CAPÍTULO 1 REVISÃO BIBLIOGRÁFICA   

 

1.1 O FOGO NA AMAZÔNIA  

 

A Floresta Amazônica é a maior floresta tropical do mundo, abrangendo nove 

países da América do Sul, sendo a maior parte localizada no Brasil (INPE, 2017).  Nas 

últimas décadas ocorreu um aumento alarmante de focos de incêndio na região, o que 

tem causado efeitos devastadores para o meio ambiente e para as comunidades que 

dependem da floresta (LIMA et al., 2021).  

O fogo na floresta amazônica ocorre principalmente devido à ação humana, 

seja intencional ou acidental (BARLOW et al., 2012). A prática mais comum é a 

queimada, que consiste na técnica de limpeza de áreas para a expansão agrícola, 

pecuária, mineração ilegal e invasões de terras (NEPSTAD et al., 2008). Porém, essa 

técnica arcaica e desordenada tem causado não apenas a destruição localizada das 

áreas queimadas, mas também contribui para o desmatamento, emissão de gases do 

efeito estufa e prejuízos irreversíveis à biodiversidade (ALENCAR et al., 2015). 

A propagação da combustão do fogo pode ocorrer por meio de três 

mecanismos distintos: convecção, radiação e condução (GOLDAMMER, 1982). As 

condições meteorológicas são fatores cruciais para o comportamento do fogo, 

conforme afirmado por Torres et al. (2020), que especificam que temperatura, 

umidade relativa do ar, velocidade do vento e precipitação atuam diretamente na 

propagação do fogo. Elevações de temperatura combinadas com baixa umidade 

relativa do ar aumentam a evaporação dos vegetais, os tornando mais secos e mais 

suscetíveis à combustão. Por outro lado, ventos elevados intensificam a propagação 

e direcionam o fogo. 

A ocorrência do fogo na floresta é frequente em períodos de baixa precipitação, 

que resultam na seca da vegetação e aumentam sua vulnerabilidade à combustão 

(ROCHA, 2016). Em específico, no estado do Acre, a seca amazônica, que ocorre 

entre os meses de julho e outubro, representa 95% das áreas queimadas (CHAVES, 

2020). 

Os impactos do fogo na Amazônia são preocupantes, afetando diversos 

aspectos ecológicos, socioeconômicos e climáticos (Aragão et al., 2018). Em primeiro 

lugar, a queima indiscriminada de árvores e vegetação libera grandes emissões de 
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dióxido de carbono (CO2) na atmosfera, inspirando significativamente para o 

aquecimento global (Morton et al., 2005). Além disso, a biodiversidade é severamente 

preservada, uma vez que muitas espécies de animais e plantas não resistem às 

chamas ou perdem seus habitats naturais (Saxena et al., 2020). 

A saúde humana também é prejudicada, já que a fumaça proveniente das 

queimadas pode causar problemas relatados como asma, bronquite e outras 

complicações pulmonares (Veras et al., 2021). A população local que depende da 

floresta para a subsistência, como ribeirinhos e indígenas, também enfrenta 

dificuldades adicionais, com a destruição de roças, pesca e caça (Assunção et al., 

2017). Além disso, incêndios florestais podem ameaçar vidas humanas e 

infraestruturas em áreas urbanas vizinhas (Setzer, 2020). 

Para entender a magnitude dessa problemática, é fundamental examinar os 

números relacionados às queimadas na Amazônia. Segundo o Instituto Nacional de 

Pesquisas Espaciais (INPE), o ano de 2019 registrou a maior quantidade de focos de 

incêndios na região desde 2010, representando um aumento de 30% em relação ao 

ano anterior (INPE, 2019). Em termos de área devastada, apenas no mês de agosto 

de 2019, cerca de 30 mil quilômetros quadrados foram suspensos por incêndios na 

Amazônia (INPE, 2019). Esses números alarmantes provocaram a urgência de ações 

mais efetivas para combater essa prática predatória. 

Além do mais é necessário esclarecer as diferenças entre queimadas e 

incêndios florestais. As queimadas são a prática deliberada de incendiar áreas, 

geralmente para a abertura de novas áreas de cultivo e pastagens, com controle 

limitado sobre o controle do fogo (Alencar et al., 2015). Já os incêndios florestais 

referem-se a incêndios não controlados que ocorrem na vegetação local, muitas vezes 

se espalhando rapidamente e de forma descontrolada (Setzer, 2020). Ambos têm 

negativo, mas os incêndios florestais são ainda mais perigosos e difíceis de combater, 

colocando-se em risco não apenas a floresta, mas também a vida de animais e 

humanos (Setzer, 2020). 

Barber et al. (2014) destacam que os incêndios florestais são um dos principais 

responsáveis pela degradação das florestas tropicais, e que em áreas como a 

Amazônia, o fogo não é um fenômeno natural, mas sim resultado da ocupação 

humana e das mudanças no uso e cobertura florestal. Além disso, os incêndios 

florestais representam uma ameaça ao ecossistema da Amazônia e, combinados com 



16 
 

o desmatamento, alteram gradativamente a dinâmica florestal, tornando-a ainda mais 

vulnerável a incêndios (MORELLO et al., 2020). 

A utilização do fogo é comumente seguida de desmatamento e é 

frequentemente empregada na Amazônia, com o objetivo de remover a camada 

vegetal natural para tornar as áreas propícias à atividade agropecuária (MOTA et al., 

2019). A queima é um método tradicional e de difícil substituição, pois é barato e 

acessível, mesmo em locais remotos (CABRAL et al., 2013). 

A ignição do fogo na floresta é um processo complexo e não linear que resultam 

da interação entre processos bióticos e abióticos e são dependentes da escala 

geográfica (CHUVIECO et al., 2019). Aponte et al. (2016) identifica quatro fatores 

principais que contribuem para a ocorrência de incêndios florestais: aspectos 

climáticos e antrópicos, fatores topográficos e características da vegetação. A seguir, 

serão apresentados os principais influenciadores dos incêndios florestais. 

 

1.1.1 Aspectos climáticos 

 

Os aspectos climáticos são considerados como um dos principais 

determinantes dos padrões de incêndios florestais devido à sua influência direta na 

umidade dos combustíveis mortos, tais como serapilheira, gramíneas secas e material 

lenhoso não vivo. A umidade dos combustíveis é crucial para estabelecer o potencial 

de ignição e propagação do fogo (MARLON et al., 2013). 

As variáveis climáticas que influenciam diretamente na umidade dos 

combustíveis incluem temperatura, precipitação, velocidade do vento, umidade do ar 

e pressão atmosférica (MARLON et al., 2013). A temperatura, como energia interna 

dos movimentos dos átomos e moléculas, desempenha um papel importante na fase 

evaporativa de combustão (HAMADEH et al., 2017). Um aumento na temperatura 

resulta em uma diminuição da umidade relativa dos materiais combustíveis, tornando-

os mais suscetíveis a incêndios (LIU e ZHANG, 2015). 

A relação entre a quantidade de água presente no ar e a quantidade máxima 

que poderia existir na mesma temperatura e pressão é conhecida como umidade 

relativa (HAMADEH et al., 2017). Quanto maior for a umidade relativa, menor será a 

evaporação e maior será a absorção de umidade dos materiais combustíveis. Por 

outro lado, quanto menor for a umidade relativa, maior será a evaporação e menor 
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será a umidade dos materiais. É importante notar que uma umidade acima de 75% é 

considerada como sem risco de incêndio, entre 55% e 75% o risco é baixo, entre 30% 

e 55% o risco é alto e abaixo de 30% é considerado como risco muito alto (LIU e 

ZHANG, 2015). 

A precipitação é um fator crucial na determinação dos ciclos de incêndios 

florestais, sendo que períodos prolongados de seca estão fortemente associados à 

ocorrência de incêndios. No entanto, a ocorrência de precipitação uniforme durante a 

estação de seca pode diminuir a suscetibilidade de incêndios (FERREIRA, 2017; 

FLANNIGAN et al., 2013). 

A propagação do fogo é diretamente influenciada pela direção e velocidade dos 

ventos, uma vez que o aumento de oxigênio causado pelos ventos eleva a condição 

de combustão e interfere na evaporação dos combustíveis, tornando-os mais secos e 

inflamáveis (DONG et al., 2021). 

As condições climáticas estão relacionadas à pressão atmosférica, sendo que 

as áreas de alta pressão tendem a apresentar temperaturas elevadas e baixa 

umidade, o que favorece a ocorrência de incêndios. Por outro lado, as áreas de baixa 

pressão tendem a ser associadas a nuvens e precipitações (LIU e ZHANG, 2015) 

 

1.1.2 Aspectos antrópicos 

 

Os aspectos antrópicos na natureza referem-se às interferências humanas nos 

ecossistemas naturais. A degradação florestal resultante das atividades humanas, 

como a expansão de atividades agropecuárias e a urbanização, é uma das principais 

causas da perda da biodiversidade e um agente relevante na ocorrência de incêndios 

florestais, seja acidental ou criminoso (ADAB et al., 2013). 

A expansão de atividades agropecuárias, bem como a urbanização, são os 

principais fatores que têm contribuído para a degradação e fragmentação dos 

ecossistemas florestais, sendo que o desmatamento e as queimadas na região da 

Amazônia são fortemente relacionados (ARAGÃO et al., 2018) 

Além disso, as rodovias e estradas têm uma contribuição relevante nas 

ocorrências de incêndios florestais, especialmente na região Amazônica, onde o 

acesso facilitado a áreas remotas por meio dessas infraestruturas possibilita 

atividades como a agropecuária e a retirada de madeira, aumentando a probabilidade 
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de incêndios (CAÚLA et al., 2015). A densidade de rodovias também é apontada como 

um fator relevante para o aumento dos focos de incêndios (JÚNIOR et al., 2019). 

 

1.1.3 Fatores topográficos 

 

As características topográficas, altitude e declividade, são elementos 

moduladores de regiões, intervindo diretamente nas condições meteorológicas e 

climáticas, como a temperatura do ar, precipitação e radiação solar (CAÚLA et al., 

2015). Além disso, eles também controlam a cobertura vegetal e o uso e ocupação do 

solo, o que, por sua vez, tem um impacto direto na ocorrência de incêndios e 

queimadas (PARENTE e PEREIRA, 2016). 

Terrenos com alta declividade apresentam uma maior taxa de propagação de 

fogo devido ao sistema de pré-ignição por convecção eficiente e ignição por ponto de 

contato (CHUVIECO e CONGALTON, 1989). 

A orientação do terreno também é um fator a ser observado, pois suas faces 

têm influência na exposição aos raios solares, afetando na taxa de secagem do 

material combustível (JUVANHOL, 2014). Quanto maior a incidência de radiação 

solar, maior será a temperatura do ar e menor será a umidade (EUGENIO et al., 2016). 

 

1.1.4 Características da vegetação 

 

A transformação dos elementos de paisagem, tais como a disponibilidade de 

massa vegetal, afeta diretamente a inflamabilidade dos materiais presentes na região, 

conforme descrito por Fonseca et al. (2019). Badia et al. (2019) demonstra que a 

ocorrência de incêndios florestais tem correlação direta com a alteração da cobertura 

vegetal realizada pela modificação do uso e ocupação do solo. 

A estrutura de paisagem, que reflete a forma e o padrão do uso e ocupação do 

solo, tem um impacto significativo na frequência e severidade de incêndios, devido à 

sua influência na carga combustível da região, além de afetar o microclima loca 

(AQUILUÉ et al., 2020). 

Em áreas florestais, a densa vegetação intercepta a radiação solar, reduzindo 

a temperatura do ar e servindo como barreira à velocidade do vento, diminuindo assim 

a taxa de evaporação, e consequentemente, dificultando a perda de umidade dos 



19 
 

materiais combustíveis (NUNES et al., 2008; GOMES et al., 2020). Contudo, em áreas 

onde a paisagem florestal é modificada, especialmente pela ação humana, os níveis 

de evaporação e temperatura são alterados, aumentando a carga combustível dos 

materiais suscetíveis a incêndios (AQUILUÉ et al., 2020; GOMES et al., 2020). 

 

1.2 SENSORIAMENTO REMOTO 

 

O uso de sensoriamento remoto no monitoramento ambiental tem 

revolucionado o campo, fornecendo dados valiosos sobre a superfície terrestre 

(Abbasi et al., 2021). Essa tecnologia tem sido amplamente aplicada em diversas 

áreas, incluindo agricultura de precisão, estudos sobre mudanças climáticas e 

planejamento urbano (Balzter et al., 2018; Jensen et al., 2018; Li et al., 2020). 

Uma aplicação específica do sensoriamento remoto é o monitoramento do 

desmatamento, que se tornou um grave problema ambiental em escala global. 

Técnicas de sensoriamento remoto, como o uso de modelos de altura de dossel 

derivados de dados LiDAR aéreo, têm possibilitado o mapeamento e monitoramento 

precisos do desmatamento e degradação florestal (Hansen et al., 2013; Hall et al., 

2016). 

Adicionalmente, o sensoriamento remoto tem se tornado amplamente adotado 

no monitoramento ambiental, permitindo a aquisição de informações sobre a 

superfície terrestre por meio da captura de sinais eletromagnéticos. Essa tecnologia 

desempenha um papel crucial no mapeamento e estudo de diversos processos e 

fenômenos, como o monitoramento do desmatamento, a detecção de poluição e a 

análise da qualidade do ar e da água (Gomes et al., 2018; Paulino et al., 2017; Lopes 

et al., 2016). 

Uma das aplicações mais relevantes do sensoriamento remoto no 

monitoramento ambiental é a detecção e monitoramento de focos de calor ou áreas 

de intenso calor. Os focos de calor surgem principalmente de atividades humanas, 

como incêndios florestais e queimadas, e podem ter graves consequências 

ambientais, incluindo perda de habitat, degradação do solo e emissões de gases de 

efeito estufa (Silva et al., 2020; Araújo et al., 2019). 
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1.2.1 Focos de calor  

 

Os focos de calor, também conhecidos como hotspots, são importantes 

ferramentas utilizadas para o monitoramento ambiental. Ao longo da história, o uso de 

hotspots tem desempenhado um papel fundamental na detecção e prevenção de 

incêndios florestais, além de auxiliar na gestão dos recursos naturais e na 

conservação da biodiversidade (IPAM, 2018).  

A definição básica de um hotspot é uma área na superfície da Terra onde há 

um aumento significativo de temperatura em comparação com áreas adjacentes (Silva 

et al., 2020). Esse aumento de temperatura geralmente está relacionado ao fogo, seja 

causado por causas naturais como raios ou ações humanas como incêndios e 

incêndios criminosos (Silva et al., 2020). Os hotspots podem ser identificados por meio 

de técnicas de sensoriamento remoto, como imagens de satélite, que captam a 

radiação infravermelha na superfície da Terra (Barbosa et al., 2017). 

A utilização de hotspots como metodologia de monitoramento ambiental é de 

extrema importância. Em primeiro lugar, esta técnica permite a detecção rápida de 

incêndios florestais, possibilitando ações imediatas para combatê-los e minimizar os 

danos causados (INPE, 2021). Além disso, o monitoramento contínuo dos hotspots 

possibilita o estabelecimento de estratégias de prevenção, como a identificação de 

áreas de alto risco e a implementação de medidas de educação ambiental (IPAM, 

2018). 

Outro benefício do uso de hotspots está relacionado ao manejo de recursos 

naturais. Por meio do monitoramento dessa variável, é possível identificar áreas que 

têm sido consistentemente impactadas por incêndios e, consequentemente, 

implementar ações voltadas para a recuperação e conservação dessas áreas (Pivello 

et al., 2019). A identificação de hotspots também pode auxiliar no combate a 

atividades ilegais como extração de madeira e desmatamento, já que essas práticas 

muitas vezes são precedidas de queimadas para facilitar o acesso e a extração de 

recursos (Setzer, 2009). 

No entanto, o uso de hotspots também tem suas limitações e desvantagens. A 

detecção de focos de calor não significa necessariamente a existência de incêndios 

ativos, pois os focos de calor residual podem ser detectados após a ocorrência do 

incêndio (Tollefson, 2019). Além disso, a resolução espacial dos satélites utilizados 
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pode ser um problema, pois hotspots muito pequenos podem não ser detectados, 

dificultando a identificação de incêndios preliminares (WWF, 2019). 

Outro desafio é a correta interpretação da origem dos hotspots. Por exemplo, 

raios podem causar incêndios naturais em áreas de difícil acesso, enquanto incêndios 

criminosos ocorrem frequentemente em regiões de fronteira agrícola (Setzer, 2009). 

Portanto, esforços conjuntos entre diferentes órgãos e instituições são necessários 

para interpretar e atribuir corretamente a origem dos hotspots, visando a devida ação 

e responsabilização (Dor, 2018). 

No contexto do Brasil, um país com grande extensão de florestas e 

ecossistemas independentes, o uso de hotspots é de extrema importância. Segundo 

o Instituto Nacional de Pesquisas Espaciais (INPE), o monitoramento de hotspots é 

realizado por meio do programa de detecção ativa de incêndio denominado Programa 

de Monitoramento de Incêndios (INPE, 2021). Esse programa utiliza imagens de 

satélite operando na faixa do infravermelho e tem papel fundamental na prevenção e 

controle de incêndios florestais no país (INPE, 2021). 

 

1.3. RESERVA EXTRATIVISTA 

 

A história das reservas extrativistas no Brasil remonta ao início da década de 

1980 (DE MORAES, ADAMS, 2021). Nesse período, o governo brasileiro iniciou a 

implementação de medidas de proteção ambiental visando conciliar a preservação da 

natureza com as atividades de subsistência das tradicionais (DE MORAES, ADAMS, 

2021).  

As reservas extrativistas foram criadas como uma forma de reconhecimento e 

proteção dos modos de vida adotados por comunidades indígenas, quilombolas e 

ribeirinhas que dependem dos recursos naturais para sua sobrevivência (DE 

MORAES, ADAMS, 2021). 

A criação das reservas extrativistas está embasada na legislação brasileira, 

como o Sistema Nacional de Unidades de Conservação da Natureza (SNUC) e a 

Constituição Federal de 1988, que estabelecem a obrigação do Estado em preservar 

o meio ambiente e garantir os direitos culturais, sociais e intelectuais das comunidades 

tradicionais (DE MORAES, ADAMS, 2021).  
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Atualmente, existem 88 reservas extrativistas no Brasil, distribuídas por todo o 

território nacional, cobrindo uma área de aproximadamente 15,8 milhões de hectares 

(BRASIL, 2008). 

Essas reservas são criadas por meio de decreto presidencial, após um 

processo de estudo e consulta pública. Cada reserva possui uma comunidade 

tradicional como população residente e é gerida por um conselho deliberativo 

composto por representantes das comunidades locais, órgãos governamentais e 

organizações não governamentais (BRASIL, 2008).  

No entanto, as reservas extrativistas enfrentaram desafios para sua efetiva 

implementação e gestão (SILVA et al., 2017).  

Um desses desafios é a pressão exercida por atividades ilegais, como a 

exploração madeireira e o garimpo, que representam ameaças diretas aos modos de 

vida tradicionais e aos ecossistemas presentes nas reservas (SILVA et al., 2017). 

A falta de recursos para a vigilância e monitoramento das áreas também 

dificulta o combate a essas atividades ilegais (SILVA et al., 2017).  

Outro desafio é a garantia dos direitos territoriais das comunidades tradicionais, 

uma vez que muitas vezes enfrenta conflitos fundiários e invasões de seus territórios 

por parte de empresas e grandes proprietários rurais (SILVA et al., 2017).  

A falta de regularização fundiária e sobreposição de áreas protegidas com 

outras unidades de conservação e terras indígenas também gerou choques e 

insegurança para as comunidades tradicionais (SILVA et al., 2017).  

Além disso, a ausência de políticas públicas adequadas para o 

desenvolvimento econômico sustentável das reservas extrativistas é outro desafio a 

ser enfrentado (FREITAS, 2012). 

A dependência das atividades extrativistas tradicionais muitas vezes limita a 

geração de renda e a melhoria das condições de vida dos residentes (FREITAS, 

2012).  

É fundamental promover alternativas econômicas viáveis e compatíveis com a 

conservação dos recursos naturais, como o ecoturismo e a agroecologia, de forma a 

garantir a sustentabilidade das comunidades e a preservação dos ecossistemas 

(JANSEN, NUNES, SILVA, 2011).  
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No entanto, é necessário superar os desafios existentes para que essas áreas 

comprem efetivamente seu papel na conservação da natureza e no desenvolvimento 

socioeconômico das comunidades (DE MORAES, ADAMS, 2021). 

 

1.3.1 Reservas extrativistas no Acre  

 

 Atualmente, o estado do Acre abriga cinco reservas extrativistas distintas 

(Figura 1), a saber: Alto Juruá, Cazumbá-Iracema, Chico Mendes, Tarauacá e 

Riozinho da Liberdade (Brasil, 2021). Essas áreas protegidas estão estrategicamente 

distribuídas em diversas regiões do estado, abrangendo uma ampla variedade de 

ecossistemas, como florestas amazônicas, manguezais e cursos d'água. Em conjunto, 

essas reservas formam uma extensa malha de conservação, desempenhando um 

papel fundamental na salvaguarda da biodiversidade e na manutenção dos modos de 

vida tradicionais das comunidades locais. 

 

Figura 1 - Resex localizadas no estado do Acre. 
Fonte: Os autores (2023). 
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A Reserva Extrativista Alto Juruá, destacando-se como uma das maiores do 

Acre, ocupa uma área de aproximadamente 497.849 hectares (ICMBio, 2021). Situada 

no extremo ocidental do estado, nas proximidades da fronteira com o Peru, a RESEX 

Alto Juruá engloba uma diversidade de paisagens, incluindo florestas inundáveis, 

corpos d'água e rios. Com uma população estimada em cerca de 1.632 famílias, 

composta por seringueiros, ribeirinhos e comunidades indígenas (Ferreira, 2018), 

essa reserva representa um importante centro de subsistência, com recursos naturais 

como borracha, castanha-do-brasil e atividades de pesca desempenhando um papel 

crucial em suas economias (Silveiro et al, 2019). 

Datada de 17 de fevereiro de 2005, a Reserva Extrativista Riozinho da 

Liberdade se estende por 323.564 hectares e ocupa a bacia do rio Liberdade, 

abrangendo partes dos municípios de Tarauacá, Porto Walter, Marechal Thaumaturgo 

e Cruzeiro do Sul (BRASIL, 2005). Os moradores desta área dedicam-se a uma série 

de atividades agrícolas, com destaque para o cultivo de mandioca, milho, feijão, arroz 

e banana, além de atividades pecuárias como avicultura e bovinocultura (Silveiro et 

al, 2019). 

A Reserva Extrativista Alto Tarauacá, criada em oito de novembro de 2000 

(BRASIL, 2000), encontra-se nos municípios de Tarauacá, Marechal Thaumaturgo e 

Feijó. Nesta região, a exploração de recursos naturais como borracha e castanha-do-

brasil tem um impacto econômico significativo, coexistindo com outras atividades de 

menor escala, como a extração de cipó-timbó e açaí (Silveiro et al, 2019). 

A RESEX Cazumbá-Iracema, com uma extensão de 754.276 hectares, 

posiciona-se nos municípios de Sena Madureira e Manoel Urbano. Esta reserva, 

criada por decreto S/N de 19 de setembro de 2002 (BRASIL, 2002), é habitada por 

cerca de 1.300 moradores agrupados em 270 famílias. Com suas atividades 

concentradas em unidades produtivas denominadas colocações, essas famílias têm 

na agricultura e na exploração sustentável de recursos florestais a base de sua 

subsistência (Silveiro et al, 2019). 

A Reserva Extrativista Chico Mendes, com uma vastidão aproximada de 

970.570 hectares (ICMBio, 2021), situa-se no sudoeste do estado e abrange porções 

dos municípios de Brasiléia, Xapuri e Rio Branco. O nome da reserva é uma 

homenagem a Chico Mendes, líder seringueiro que lutou incansavelmente pelos 

direitos dos extrativistas na Amazônia. Atualmente, cerca de 1.425 famílias vivem na 
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reserva, dependendo da coleta de borracha, da agricultura e da pesca para sua 

subsistência (Ferreira, 2018). 

A Reserva Extrativista Chico Mendes destaca-se como a maior reserva 

extrativista do estado, seguida pela Cazumbá-Iracema e Alto Tarauacá. Todas essas 

reservas possuem um método de geração de renda para as famílias residentes, 

baseado predominantemente em atividades extrativistas. No entanto, ao examinar os 

níveis de ameaças enfrentadas por essas reservas no que concerne à incidência de 

incêndios, é evidente que a RECM historicamente enfrenta uma maior pressão do 

regime de fogo. Isso pode ser claramente observado no Figura 2, ao qual apresenta 

a comparação do número de focos de calor observados nas Resex. No ano de 2021, 

na RECM, foi registrada a presença de um total de 12.765 focos de calor. Esse número 

representa aproximadamente 83% de todos os focos registrados nas reservas 

extrativistas federais do estado do Acre (INPE, 2023). 
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Figura 2 - Histórico de focos de calor nas Resex federais do Acre. 2002-2021. 
Fonte: Os autores (2023). 
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1.4. REDES NEURAIS ARTIFICIAIS 

 

As Redes Neurais Artificiais (RNA) são modelos computacionais baseados no 

processo de aprendizado de um cérebro biológico. Sua estrutura é composta por 

unidades de processamento simples, denominadas neurônios, que operam em 

paralelo, armazenando e tornando disponível informações para aplicações. A 

semelhança com o processo biológico de aprendizado é formulada através das 

conexões neurais, chamadas de pesos sinápticos, que armazenam o conhecimento 

adquirido (HAYKIN, 2001). 

A analogia com o sistema nervoso humano pode ser feita através de três 

estágios: receptores, redes neurais e atuadores (Figura 3). Os receptores 

transformam estímulos sensoriais do corpo humano ou do ambiente externo em 

impulsos elétricos que são transmitidos à rede neural. A rede neural é o centro do 

sistema, portanto, é o cérebro, que recebe as informações e toma as decisões para 

os impulsos elétricos enviados. Importante observar que o processo da rede neural 

não é apenas de saída, pois também passa pelou processo de aprendizado, de acordo 

com a informação externa impostas, ou seja, uma realimentação do sistema. Por fim, 

os atuadores transformam os impulsos elétricos enviados pela rede neural em 

respostas como saída do sistema. (HAYKIN, 2001). 

. O sistema nervoso central, especificamente o cérebro, é caracterizado por sua 

complexidade e dinamicidade, possuindo uma capacidade adaptativa e auto-

organizacional de suas estruturas internas. O neurônio é uma das principais unidades 

funcionais deste sistema, sendo responsável pela transmissão de informação por 

meio de impulsos elétricos. As estruturas principais de um neurônio biológico incluem 

os dendritos, o corpo celular e o axônio (Figura 4). Os dendritos, estrutura de entrada, 

são responsáveis pela captação de impulsos elétricos, enquanto o corpo celular 

Figura 3- Representação em blocos do sistema nervoso 
Fonte: Adaptado HAYKIN, 2001, p.32. 
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processa e determina a ação que permitirá a propagação do sinal através do axônio. 

O axônio, por sua vez, é responsável pela propagação dos impulsos elétricos para os 

dendritos de outros neurônios em zonas ativas dos neurônios, conhecidas como 

sinapses (ROMERO, 2017). 

 

As RNAs foram inicialmente propostas em 1943 pelo neurofisiologista Warren 

McCulloch e pelo matemático Walter Pitts, com o objetivo de modelar o funcionamento 

dos neurônios através de uma rede neural simplificada utilizando circuitos elétricos. 

Desde então, com o avanço tecnológico computacional, as RNAs evoluíram e a 

compreensão do funcionamento das atividades cerebrais também se aprimorou 

(LÓPES e FERNÁNDES, 2008). 

De acordo com Simon Haykin (2021), as RNAs podem ser entendidas como 

sendo "um processador maciçamente paralelamente distribuído constituído de 

unidades de processamento simples, que têm a propensão natural para armazenar 

conhecimento experimental e torná-lo disponível para o uso". O autor aponta que as 

RNAs possuem duas semelhanças com as redes neurais biológicas: a capacidade de 

aprendizagem e o processo de armazenamento de conhecimento pelas conexões 

entre neurônios. 

 

Figura 4- Descrição de um neurônio biológico. 
Fonte: Adaptado (VIÑUELA e LÉON, 2004, p.4.) 
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1.4.1 Neurônio artificial 

O neurônio artificial (NA) é um elemento fundamental na estrutura de uma rede 

neural artificial, tendo a função de processar a informação. A Figura 5 apresenta um 

modelo não linear de uma unidade de processamento em uma NA. De acordo com 

Haykin (2001), três componentes compõem a estrutura de um NA: sinapses, junção 

aditiva e função de ativação. As sinapses são as conexões que permitem a 

transmissão de informação entre neurônios, a junção aditiva é responsável por 

combinar os sinais de entrada e a função de ativação é utilizada para determinar a 

saída do neurônio, a partir da combinação dos sinais de entrada. 

 

Figura 5- Modelo não linear de um neurônio. 
Fonte: (HAYKIN, 2001, p.36) 

 

As sinapses são representadas matematicamente por meio da multiplicação 

das entradas (𝑥𝑚) com os pesos sinápticos (𝑤𝑚), os quais podem assumir valores 

positivos ou negativos. A junção aditiva é responsável pela soma dos sinais de 

entrada, resultando em uma combinação linear. A função de ativação, por sua vez, 

restringe a amplitude do sinal de saída em função dos argumentos, geralmente com 

amplitude de intervalo [0,1] ou [-1,1]. Os bias (𝑏𝑘) ou viés são aplicados externamente 

e têm o efeito de ajustar a entrada da função de ativação (HAYKIN, 2001). 

Em termos de equações matemáticas um neurônio (𝑘) pode ser apresentado 

com as seguintes equações: 

 

𝑦𝑘 = 𝜑 (𝑢𝑘 + 𝑏𝑘)                                                                    (1) 
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e 

𝑢𝑘 = ∑ 𝑤𝑖𝑗𝑥𝑗
𝑚
𝑗=1                                                    (2) 

Onde 𝑥1, 𝑥2, . . . , 𝑥𝑚são as entradas; 𝑤𝑘1, 𝑤𝑘2, . . . , 𝑤𝑘𝑚são os pesos sinápticos; 𝑢𝑘 

é o resultado da junção aditiva; 𝑏𝑘 é as bias; 𝜑 (⋅) é a função de ativação; e 𝑦𝑘é o sinal 

de saída do neurônio. 

A função de ativação  𝜑 (⋅),  defini a saída de um neurônio de acordo com os 

argumentos utilizados, definindo a linearidade ou não dos resultados da NA. Haykin 

(2021) apresenta os três tipos básicos das funções de ativação: 

1. Função Limiar: neste modelo um neurônio assume o valor 0, caso o campo 

local induzido daquele neurônio for negativo, e 1 caso for positivo. 

 

𝑦𝑘 = {1 𝑠𝑒 𝑣𝑘  ≥ 0   0 𝑠𝑒  𝑣𝑘 < 0                                                                (3) 

 

  

Figura 6- Função limiar. 
Fonte: Adaptado (HAYKIN, 2001, p.39.) 

 

2. Função linear por partes: o fator de amplificação dentro da região linear da 

operação se torna a unidade, podendo ser considerada uma aproximação do 

amplificador não-linear. 
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𝜑(𝜐) =

{
 
 

 
 1,                          𝜐 ≥

1

2

𝜐, +
1

2
> 𝜐 > −

1

2

0 ,                     𝜐 ≤ −
1

2

                                               (4) 

 

3. Função Sigmóide: é a mais utilizada na utilização da função de ativação das 

RNAs, tendo um balanceamento adequado entre comportamento linear e não 

linear. Um exemplo deste modelo é a função logística:  

𝜑(𝜐) =
1

1 +𝑒𝑥𝑝 𝑒𝑥𝑝 (−𝑎𝜐) 
 

                                                       (5) 

 

 

1.4.2 Tipos de arquiteturas de redes neurais 

 

 A arquitetura de uma RNA é um aspecto crucial para o sucesso do modelo no 

estudo de um determinado problema. De acordo com Braga (2000), é importante 
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Figura 7- Função linear por partes. 
Fonte: Adaptado (HAYKIN, 2001, p.39. 

Figura 8 - - Função Sigmóide. 
Fonte: Adaptado (HAYKIN, 2001, p.39.) 
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estabelecer uma relação entre a arquitetura da RNA e o problema em questão. A 

composição da arquitetura da RNA é estruturada com base no número de entradas, 

camadas, neurônios e nós de saída. 

Basicamente, as RNAs são compostas por camadas de entrada, intermediárias 

ou ocultas e saída. Segundo Haykin (2001), existem três tipos básicos de arquitetura 

de RNAs: 

● Redes alimentadas diretamente com Camada Única: Este é o modelo 

mais simples de RNA, tendo apenas uma camada de entrada que se 

projeta diretamente na camada de saída. Este tipo de arquitetura é 

conhecido como alimentada adiante ou acíclica. 

● Redes alimentadas diretamente com Múltiplas Camadas: Neste tipo 

de arquitetura, há a presença de camadas ocultas, cuja função é extrair 

estatísticas de ordem elevada entre as camadas de entrada e saída, 

tornando a rede capaz de processar informações complexas. 

● Redes recorrentes: possuem laços de realimentação, permitindo um 

maior impacto de aprendizado e desempenho na RNA. Estas redes 

podem utilizar elementos de atraso unitário. Podendo também utilizar-se 

de elementos de atraso unitário (𝑧−1) resultando em uma dinâmica não-

linear. 

 

Figura 9 - Arquitetura de redes. 
Fonte: Adaptado (HAYKIN, 2001, p.47 e 48) 
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As redes de múltiplas camadas, também conhecidas como MultiLayer 

Perceptron (MPL) ou Perceptron Multicamadas (PMC), são um tipo de arquitetura 

amplamente utilizado nas redes neurais (LÓPES e FERNÁNDES, 2008). Segundo 

Gonçalves (2009), essa arquitetura apresenta maior capacidade de análise em 

comparação com outras estruturas de redes neurais, devido à utilização de camadas 

ocultas, que são responsáveis pela captura de não-linearidades presentes nos dados. 

 

1.4.3 Processo de aprendizagem  

A capacidade de aprender e melhorar o desempenho através de aprendizado 

é uma característica fundamental das redes neurais. O processo de aprendizado 

ocorre através da interação entre os pesos sinápticos e os níveis de viés, aumentando 

a precisão da solução do problema a cada iteração (LÓPES e FERNÁNDES, 2008).  

Segundo Haykin (2001), o algoritmo de aprendizagem é um conjunto de regras 

predefinidas para a resolução de problemas, onde existem várias maneiras de 

estabelecer as definições, cada uma oferecendo vantagens específicas. As cinco 

regras básicas de aprendizagem das RNAs são (HAYKIN, 2001):  

● Aprendizado por correção de erro: baseada na comparação entre o 

sinal de saída 𝑦𝑘(𝑛) de um neurônio (𝑘), com uma resposta desejada ou 

saída-alvo, representada por 𝑑𝑘(𝑛), originando um sinal de erro (𝑒𝑘(𝑛)), 

conforme a equação: 

𝑒𝑘(𝑛) = 𝑑𝑘(𝑛) − 𝑦𝑘(𝑛)                                                    (6) 

O sinal de erro 𝑒𝑘(𝑛) processa o mecanismo de controle, que 

possui o objetivo de aplicar uma sequência de correções aos pesos 

sinápticos do neurônio 𝑘. Os ajustes buscam uma aproximação entre o 

sinal de saída 𝑦𝑘(𝑛) e a resposta desejada 𝑑𝑘(𝑛). A aproximação 

realizada nos ajustes é chamada de função de custo ou índice de 

desempenho, 𝐸(𝑛), sendo definida como: 

𝐸(𝑛) =
1

2
𝑒𝑘
2(𝑛)                                                       (7) 
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Os ajustes dos pesos sinápticos 𝑤𝑘𝑗 de um neurônio 𝑘 excitado 

por um elemento 𝑥𝑗(𝑛) do vetor de sinal 𝑥(𝑛) no tempo 𝑛, é dado pelo 

ajuste  𝛥𝑤𝑘𝑗(𝑛) e a taxa de aprendizagem (𝜂) na seguinte equação: 

𝛥𝑤𝑘𝑗(𝑛) = 𝜂 𝑒𝑘(𝑛)𝑥𝑗(𝑛)                                             (8) 

Com o ajuste sináptico  𝛥𝑤𝑘𝑗(𝑛), o valor do peso sináptico 𝑤𝑘𝑗 e 

determinado por: 

𝑤𝑘𝑗(𝑛 + 1) = 𝑤𝑘𝑗(𝑛) + 𝛥𝑤𝑘𝑗(𝑛)                                (9)   

Os ajustes dos pesos sinápticos do neurônio 𝑘 ocorrem até o 

sistema atingir um estado estável. 

● Aprendizagem baseada em memória: todas as experiências passadas 

são armazenadas e uma memória de exemplos de entrada e saída: 

{(𝑥𝑖, 𝑑𝑖 )}𝑖=1
𝑁 , onde 𝑥𝑖 é o vetor de entradas e 𝑑𝑖 é a resposta desejada. 

Quando um vetor de teste (𝑥𝑡𝑒𝑠𝑡𝑒) deseja ser classificado, o algoritmo 

responde buscando em uma vizinhança local a resposta correspondente 

de 𝑥𝑡𝑒𝑠𝑡𝑒. 

A vizinhança local é definida como exemplo de treinamento, por 

se encontrar próximo do vetor 𝑥𝑡𝑒𝑠𝑡𝑒. Portanto um vetor: 

 

𝑥′𝑁𝜖 {𝑥1  , 𝑥2, . . . , 𝑥𝑁}                                              (10) 

é o vizinho mais próximo de 𝑥𝑡𝑒𝑠𝑡𝑒 caso:  

 

𝑚𝑖𝑛 𝑑 (𝑥𝑖, 𝑥𝑡𝑒𝑠𝑡𝑒) = 𝑑(𝑥
 ′𝑁, 𝑥𝑡𝑒𝑠𝑡𝑒)                          (11) 

onde 𝑑 (𝑥𝑖, 𝑥𝑡𝑒𝑠𝑡𝑒)é a distância euclidiana entre os vetores 𝑥𝑖 e 𝑥𝑡𝑒𝑠𝑡𝑒. 

● Aprendizagem Hebbiana: possui o princípio de aproximação entre 

neurônios. Se dois neurônios em ambos os lados de uma sinapse são 

ativados simultaneamente, a força de sua ligação é aumentada, caso o 

contrário a ligação da sinapse é enfraquecido ou eliminado. Uma 
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sinapse hebbiana depende do tempo, local e de interação para a 

correção pré-sinápticas e pós-sinápticas. A forma básica da equação de 

aprendizagem hebbiana e dado por: 

 

𝛥𝑤𝑘𝑗(𝑛) = 𝜂 𝑦𝑘(𝑛)𝑥𝑗(𝑛)                                           (12) 

Onde 𝜂 é a taxa de aprendizagem, 𝑦𝑘 é atividade pós-sináptica 

e 𝑥𝑗 a atividade pré-sináptica. 

● Aprendizagem competitiva: possui como característica a competição 

entre os neurônios de saída da RNA para serem ativados. Este método 

é muito utilizado para classificação de padrões de entradas. Possui três 

elementos básicos para sua aplicação:  

1. Um conjunto de neurônios iguais, exceto por seus pesos 

sinápticos que são distribuídos aleatoriamente; 

2. Um valor limite para ativação dos neurônios;  

3. Um mecanismo que permite a competição entre os neurônios, 

sendo somente um deste o vencedor. 

● Aprendizagem de Boltzmann: os neurônios assumem uma estrutura 

binária, quando estão “ligados” assumem a representação de +1, 

quando “desligados” são representados por -1. A função de Energia, 𝐸, 

obtém seu valor pelos estados particulares dos neurônios individuais da 

máquina, conforme a equação a seguir: 

𝐸 =
1

2
∑ 

 

𝑗

∑ 

 

𝑘

𝑤𝑘𝑗𝑥𝑘𝑥𝑗                                             (13) 

onde 𝑥𝑗 é o estado do neurônio 𝑗 e 𝑤𝑘𝑗 é peso sináptico da 

conexão entre os neurônios 𝑗 e 𝑘.  A correlação entre dos neurônios 𝑗 e 

𝑘  em uma condição presa (estado determinado pelo ambiente), 𝑝𝑘𝑗
+ , e 

𝑝𝑘𝑗
−  representa a condição de operação livre, a variação 𝛥𝑤𝑘𝑗 é expressa 

por:  

𝛥𝑤𝑘𝑗(𝑛) = 𝜂(𝑝𝑘𝑗
+ − 𝑝𝑘𝑗

− ), 𝑗 ≠ 𝑘                                        (14) 
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1.4.4 Algoritmo de retroprogramação 

 

O algoritmo conhecido como retroprogamação de erro é baseado na regra de 

aprendizagem por correção de erro (HAYKIN, 2001). Sua aprendizagem consiste em 

duas etapas: uma etapa de propagação para frente (forward propagation), onde um 

vetor de entrada é inserido nos nós sensoriais da rede e percorre todas as camadas, 

com pesos sinápticos fixados, gerando, ao final, um conjunto de saída da rede; e uma 

etapa de propagação para trás (backpropagation), onde os pesos sinápticos são 

ajustados de acordo com a regra de correção. Esta correção é realizada através da 

subtração da resposta de rede com uma resposta desejada. 

O objetivo do algoritmo de retroprogamação é minimizar a diferença entre a 

resposta da rede e a saída desejada (VIÑUELA e LÉON, 2008). Isso é alcançado 

através da otimização dos pesos sinápticos, com o intuito de aproximar a resposta da 

rede da saída desejada.Logo é um problema de minimização da seguinte maneira: 

 

𝑀𝑖𝑛𝑤𝐸                                                                           (15) 

Onde 𝑊 é o conjunto de parâmetros do neurônio (pesos sinápticos), e 𝐸 é a 

função erro que avalia a diferença entre valores de saída da rede com as desejadas. 

A função erro é definida como:  

𝐸 =
1

𝑁
∑  

𝑁

𝑛=1

𝑒(𝑛)                                                              (16) 

Sendo 𝑁 é o tamanho do conjunto de interações e 𝑒(𝑛) é o erro cometido pelo 

neurônio, dado por:  

𝑒(𝑛)  =
1

2
∑  

 

𝑖=1

(𝑠𝑖(𝑛) − 𝑦𝑖(𝑛))²                                               (17) 

  

Onde 𝑌(𝑛)  =  (𝑦1(𝑛), . . . , 𝑦𝑛(𝑛)) e 𝑆(𝑛)  =  (𝑠1(𝑛), . . . , 𝑠𝑛(𝑛)) são os vetores de 

saída do neurônio e a saída desejada para o padrão n, respectivamente. 
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As saídas dos neurônios (𝑌(𝑛)) são retroalimentadas nas camadas de entrada, 

seu somatório ponderado produz a variável conhecida como campo local induzido 

(𝑣𝑗(𝑛)) definida como: 

 𝑣𝑗(𝑛) = ∑  𝑚
𝑖=0 𝑤𝑘𝑗(𝑛)𝑦𝑘(𝑛)                                                   (18) 

O algoritmo de retropropagação aplica a correção (𝛥𝑤𝑗𝑘(𝑛)) aos pesos 

sinápticos de cada neurônio, utilizando-se da função de custo, conforme a seguir: 

 

𝛥𝑤𝑗𝑘(𝑛) = −𝜂
𝜕𝑒(𝑛)

𝜕𝑤𝑗𝑘(𝑛
                                                            (19) 

Adicionando-se o parâmetro 𝛼, é possível modificar a correção do erro, 

também denominada de regra delta, evitando a convergência a um mínimo local da 

função. A função é dada por:  

𝛥𝑤𝑗𝑘(𝑛) = 𝛼𝛥𝑤𝑗𝑘(𝑛 − 1) + Ɲ𝛿𝑗(𝑛)𝑦𝑘(𝑛)                                       (20) 

 Sendo 𝛼 definido entre os intervalos de 0 e 1, onde 𝛿𝑗 é o gradiente local do 

neurônio, definido por: 

  𝛿𝑗(𝑛) = −
𝜕𝑒(𝑛)

𝜕𝑤𝑗𝑘(𝑛)
= 𝑒𝑗(𝑛)𝜑

′
𝑗
(𝑣𝑗(𝑛))                                      (21) 

 

 

 

 

 

 

 



37 
 

CAPÍTULO 2: ANÁLISE DO REGIME FOGO NA RESERVA EXTRATIVISTA 

CHICO MENDES E SUAS CORRELAÇÕES COM FATORES PROPULSORES 

 

2.1 INTRODUÇÃO  

 

A exploração humana da natureza tem sido um assunto amplamente discutido 

devido ao crescente reconhecimento dos efeitos prejudiciais da utilização predatória. 

O Painel Intergovernamental sobre Mudanças Climáticas (IPCC) em seu relatório de 

avaliação de mudanças climáticas prevê um aumento de 1,1°C na temperatura global 

até 2022, e alerta para os impactos significativos e irreversíveis das emissões de 

gases de efeito estufa atualmente presentes até 2040 (IPCC, 2022). 

O impacto do aquecimento global tem sido uma grande preocupação global nas 

últimas décadas, com efeitos significativos em várias regiões do mundo. Em 2019, a 

Austrália enfrentou uma das piores temporadas de incêndios florestais da história, 

conhecida como "verão negro". Este evento devastador resultou em 12 milhões de 

hectares de terra queimada e a morte de cerca de 1 milhão de animais (REGAN, 

2020). Além disso, secas recordes também foram registradas em países líderes 

mundiais, incluindo Estados Unidos e China, em 2022 (PEIXOTO, 2022). 

No Brasil, fenômenos climáticos raros, como ciclones (GRANCHI, 2022) e 

tempestades de areia (FRANCO, 2021), têm sido registrados e evidenciam os efeitos 

das mudanças climáticas. Esses eventos extremos têm um impacto significativo na 

sociedade, na economia e no meio ambiente. 

As emissões de gases de efeito estufa, como o dióxido de carbono (CO2), 

metano (CH4) e óxido nitroso (N2O), têm sido reconhecidas como responsáveis pelo 

aumento do efeito estufa global, resultando em mudanças climáticas significativas em 

todo o mundo (BERNOUX et al., 2001). No Brasil, um grande contribuinte para as 

emissões desses gases é a mudança no uso da terra, especificamente a prática de 

queima para preparação de áreas destinadas à agropecuária (BRASIL, 2009), 

respondendo por cerca de 70% das emissões no país. 

De acordo com Ferniside (2002), as queimadas, que geralmente acompanham 

os desmatamentos, liberam grandes quantidades de gases de efeito estufa, sendo 

uma problemática recorrente, especialmente no Bioma Amazônico. O Instituto de 

Pesquisa Ambiental da Amazônia (IPAM) registrou cerca de 15.000 km² de áreas 
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queimadas na Amazônia entre os meses de janeiro e julho de 2022, representando 

um aumento de 7% em relação ao mesmo período do ano anterior (IPAM, 2022). 

Uma preocupação crescente é o avanço das da presença do fogo em unidades 

de conservação (UCs). No Brasil, as UCs são delimitações territoriais destinadas à 

conservação e preservação ambiental (BRASIL, 2000), e são consideradas a mais 

eficaz ação governamental na conservação da natureza e amplamente utilizadas na 

luta contra as perdas de biodiversidade das últimas décadas (MMA, 2007). 

A Reserva Extrativista (RESEX) é uma categoria de UCs, projetadas para 

conservar o estilo de vida extrativista das populações tradicionais e garantir a 

preservação ambiental. A criação das reservas foi idealizada por intermédio de 

reivindicações de movimentos seringalistas, com lideranças no estado do Acre, que 

protestavam contra a expansão da atividade agropecuária e o desflorestamento 

(ALLEGRETTI, 1989). 

Neste contexto, as RESEXs têm grande importância na manutenção da floresta 

e redução do desmatamento, além da conservação da biodiversidade (ALMEIDA et 

al., 2018). No entanto, as atividades extrativistas não se consolidaram como garantia 

de renda para a população, e diante da insegurança econômica, as famílias adotaram 

atividades que divergem dos pressupostos iniciais (FREITAS et al., 2016), levando a 

mudanças no uso e cobertura da terra nessas áreas, e consequentemente, 

aumentando as áreas desmatadas e queimadas. 

A Reserva Extrativista Chico Mendes (RECM), localizada no estado do Acre, 

tem sofrido com essas consequências. Em 2020, houve uma área de 27.500 ha 

queimadas (SILVA et al., 2020). De acordo com o Instituto Nacional de Estudos e 

Pesquisas (INEP), no ano de 2021, a RECM representou mais de 70% de todos os 

focos de queimadas de UCs no estado do Acre (INEP, 2022). 

O aumento contínuo das áreas queimadas nos últimos anos impõe a 

necessidade urgente de uma política de monitoramento e fiscalização mais rigorosa, 

bem como o desenvolvimento e implementação de metodologias precisas para 

acompanhar essas mudanças. 

A análise realizada por sensoriamento remoto é uma ferramenta valiosa no 

estudo do monitoramento de focos de calor, sendo utilizada por diversas instituições 

no esforço de conservação e preservação de espaços florestais (ROCHA et al., 2020). 
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Utilizando dados de satélites, é possível identificar pontos de queima em diversos 

territórios (JUNIOR et al., 2008). 

Considerando que os focos de calor detectados por meio de sensoriamento 

remoto por satélites são indicadores de pontos de queimadas e incêndios florestais 

na Amazônia (BROWN et al., 2006), o objetivo deste capítulo é caracterizar a dinâmica 

temporal e espacial dos focos de calor e sua relação com o desmatamento na RECM. 

Além disso, pretende-se utilizar técnicas de análises estatísticas, incluindo o 

coeficiente de correlação de Pearson e o índice de Moran, para investigar a relação 

entre fatores que preponderantes no comportamento do fogo com os focos de calor 

da RECM nos últimos 19 anos (2002 a 2021). 

 

2.2 FUNDAMENTAÇÃO TEORICA  

2.2.1 Fogo, queimadas, incêndios florestais e focos de calor   

 

A utilização do fogo em zonas destinadas à agricultura e pecuária é uma prática 

tradicionalmente empregada. Trata-se de um método de baixo custo e amplamente 

acessível, especialmente em áreas remotas, sendo, por essa razão, amplamente 

difundido nas regiões amazônicas (COPERTINO et al.,2019). 

Ao ser empregado em determinado ecossistema, o fogo pode ser categorizado 

em dois padrões distintos: queimada ou incêndio florestal. A queimada é considerada 

uma técnica de uso controlado, seguindo um conjunto de critérios pré-estabelecidos, 

o que a torna segura e eficiente no manejo das atividades agropecuárias. Em 

contrapartida, os incêndios florestais são caracterizados pelo fogo descontrolado, que 

consome indiscriminadamente todos os tipos de vegetação presentes. (SOARES; 

BATISTA, 2007). 

 Embora apresentem diferenças entre si, tanto as queimadas quanto os 

incêndios florestais são considerados riscos significativos para a preservação 

ambiental, com impactos diretos sobre as áreas florestais. Esses impactos se 

manifestam de forma química, física e biológica, levando a perda irreversível da 

cobertura vegetal original, degradação do solo, perda de biodiversidade e interrupção 

do ciclo hidrológico (SAMPAIO, 2006). 

 Dessa maneira, a busca por meios efetivos de detecção de queimadas e 

incêndios florestais torna-se essencial na luta pela preservação e conservação 
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ambiental. Entre as técnicas mais empregadas na análise da propagação do fogo em 

determinadas áreas, destaca-se o monitoramento por focos de calor. 

Os focos de calor consistem em registros identificados por meio de sensores 

embarcados em satélites, que captam a temperatura de brilho de um ponto específico 

na superfície terrestre, a qual pode chegar a 47 ºC. Tal temperatura representa um 

valor significativamente elevado em relação à superfície terrestre, o que evidencia a 

ocorrência de atividades de fogo nesse ponto (INPE, 2007). 

 Ao se analisar os dados de focos de calor, é importante levar em consideração 

algumas limitações inerentes a essa abordagem, como a falta de informações em 

intervalos de passagens dos satélites, presença de nuvens na área afetada pelo fogo, 

bem como o fogo superficial em vegetação com dossel fechado, não detecção de 

fogos que não gerem focos de calor significativos. Desta forma, é preciso ter em mente 

que esses registros representam apenas uma fração do total de incêndios florestais e 

queimadas ocorridos em determinada área (PEREIRA et al., 2012) 

Conforme afirmado por Setzer e Morelli (2011), a monitoração de regiões 

afetadas pelo uso do fogo, por meio da análise dos dados de focos de calor, é uma 

abordagem adequada para áreas remotas que não dispõem de outras formas de 

detecção em tempo real.  

 

2.2.2 Fatores que influenciam o fogo  

 

Os aspectos preponderantes que determinam o comportamento do fogo 

envolvem a qualidade do material combustível, as características climáticas, o tipo de 

vegetação e a presença humana. Essas variáveis podem ser agrupadas entre aquelas 

que impactam o risco de início de um incêndio e as que afetam a forma como este se 

propaga (VASCONCELOS e VENTURA, 2006). 

As condições climáticas, como temperatura, umidade relativa do ar, direção e 

velocidade do vento e precipitação, exercem um efeito significativo tanto na ignição 

quanto na propagação dos incêndios florestais. Esses fatores afetam diretamente o 

teor de umidade do material combustível, o que pode facilitar o início do fogo. Além 

disso, a velocidade e a direção do vento são fatores críticos que influenciam nas 

estratégias de combate aos incêndios, pois indicam a taxa de propagação e a possível 

direção do fogo (SOARES, 1995). 
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Considerando ser um fator determinante do clima regional, a topografia 

também desempenha um papel importante na propagação do fogo. Embora seja um 

fator estático, o relevo influencia o comportamento dos ventos locais, bem como o 

clima ou microclima da região. Além disso, a cobertura vegetal ou o tipo de vegetação 

é uma característica fundamental a ser considerada. Vegetações mais densas tendem 

a manter um teor de umidade mais estável devido à criação de seu próprio microclima, 

enquanto vegetações mais esparsas estão mais sujeitas à perda de umidade e 

permitem uma maior circulação de ar, facilitando assim a propagação do fogo 

(VASCONCELOS e VENTURA, 2006). 

Conforme destacado por Fernández et al. (2009), a atividade humana é 

atualmente o principal agente causador de incêndios florestais. Em áreas próximas a 

regiões densamente povoadas ou a infraestruturas como rodovias, ferrovias e áreas 

de recreação, a probabilidade de ignição aumenta consideravelmente devido à maior 

exposição a fontes de ignição decorrentes da negligência humana.  

 

2.2.3 Correlação de Pearson 

 

O coeficiente de correlação de Pearson é uma medida estatística que foi 

desenvolvida pelo matemático e estatístico Karl Pearson em conjunto com o cientista 

Francis Galton, no final do século XIX (STIGLER, 1989). Essa medida é utilizada para 

avaliar a intensidade e a direção da relação linear entre duas variáveis quantitativas 

(MOORE, 2007). Em outras palavras, o coeficiente de correlação de Pearson 

expressa o grau de associação linear existente entre duas variáveis. 

A correlação de Pearson (r) pode ser calculado a partir da seguinte fórmula: 

 

𝑟 =
(Σxy − 

(ΣxΣy)
𝑛  )

√(
(Σx² − (Σx)²

𝑛 ) ∗  (
Σy² − (Σy)²

𝑛 ))

                                  (22)  

Onde: 

 

 r é coeficiente de correlação de Pearson; 

 𝛴𝑥𝑦 é a soma dos produtos entre os desvios em relação às médias de x 

e y; 
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 𝛴𝑥 é a soma dos desvios em relação à média de x; 

 𝛴𝑦 é a soma dos desvios em relação à média de y; 

 𝛴𝑥² é a soma dos quadrados dos desvios em relação à média de x; 

 𝛴𝑦2 é a soma dos quadrados dos desvios em relação à média de y; 

 𝑛 é o número de observações. 

 

 

A variação da correlação ocorre entre -1 e +1. Um valor de r igual a +1 indica 

uma correlação perfeita e positiva entre as variáveis, ou seja, quando uma variável 

aumenta, a outra também aumenta na mesma proporção. Por outro lado, um valor de 

r igual a -1 indica uma correlação perfeita e negativa entre as variáveis, ou seja, 

quando uma variável aumenta, a outra diminui na mesma proporção. Quando r é igual 

a zero, não há correlação linear entre as variáveis. (FILHO et al., 2014) 

 

2.2.4 Indice de Moran 

 

Em certos espaços geográficos, é comum que variáveis apresentem padrões 

similares de distribuição, de modo que a presença de uma distribuição espacial 

específica de uma variável pode indicar a existência de padrões semelhantes de 

outras variáveis nesse mesmo espaço (LUZARDO et al., 2017). 

O Índice de Moran é uma técnica de análise exploratória utilizada para 

identificar a estrutura de correlação espacial presente em dados georreferenciados. 

Essa técnica estatística é aplicada com o objetivo de estimar a magnitude da 

autocorrelação espacial entre as áreas, através da identificação da medida estatística 

mais adequada para descrever a covariância espacial presente nos dados (CÂMARA 

et al., 2002). 

O Índice de Moran é aplicado, usualmente, em unidades de área às quais 

estejam associados atributos do tipo racional ou de intervalo (LONGLEY et al., 2005) 

e expressa a autocorrelação, considerando apenas o primeiro vizinho, ou seja, 

emprega a matriz de vizinhança de primeira ordem, independentemente do critério de 

composição da matriz [W] escolhido. Usa-se esta expressão (Câmara et al., 2002): 

O Índice de Moran é comumente aplicado em unidades de áreas que sejam 

associadas a uma escala racional ou de intervalo, utilizando-se a matriz vizinha de 
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primeira ordem para a análise espacial (LONGLEY et al., 2005). O cálculo do Índice 

de Moran Global (I) é realizado através da seguinte expressão matemática: 

 

𝐼 =  
∑ ∑ 𝑤𝑖𝑗(𝑧𝑖 − 𝜇𝑧)(𝑧𝑗 − 𝜇𝑧)

𝑛
𝑗=1

𝑛
𝑖=1

∑ (𝑧𝑖 − 𝜇𝑧)²
𝑛
𝑖=1

                                     (23) 

 

Onde: 

 

 𝑛 é o número de áreas; 

 𝑧𝑖 é o valor do atributo considerado na área 𝑖 ; 

 𝜇𝑧 é o valor médio do atributo na região de estudo; 

 𝑤𝑖𝑗 é o elemento 𝑖𝑗 da matriz de vizinhança normalizada. 

 

O resultado obtido pela equação de 𝐼 é semelhante ao resultado obtido pela 

correlação linear de Pearson (COSTA NETO, 2002). Se houver uma correlação 

positiva dos dados, então a maioria dos polígonos vizinhos terá valores do mesmo 

lado da média, e o índice será positivo ([𝐼 > 0]), indicando uma correlação espacial 

direta. Por outro lado, se os dados se correlacionam negativamente, então a maioria 

dos polígonos vizinhos terá valores de atributos em lados opostos da média, e o índice 

será negativo ([𝐼 < 0]), indicando uma correlação espacial inversa. Quando o índice 

for igual a zero ([𝐼 = 0]), isso indica a ausência de correlação espacial (LUZARDO et 

al., 2017). 

 

2.2 METODOLOGIA 

 

2.2.1 Coleta dos dados 

 

Para a realização do presente estudo, utilizaram-se dados obtidos por meio de 

fontes públicas na internet. Os pontos de calor da RECM foram obtidos a partir do 

Banco de Dados de Queimadas (BDQueimadas), gerenciado pelo Instituto Nacional 

de Pesquisas Espaciais (INPE). O BDQueimadas é um repositório de informações 

históricas acerca de focos de queimada detectados por satélites, que conta 

atualmente com um acervo de aproximadamente 250 milhões de pontos, desde o ano 
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de 1998. A coleta desses pontos se deu por meio de dez satélites distintos, dentre os 

quais se destacam oito satélites polares (NOAA-18, NOAA-19, NOAA-20, METOP-B, 

METOP-C, NASA TERRA e AQUA) e dois satélites geoestacionários (GOES-16 e 

MSG-3). Cabe ressaltar que todos esses satélites utilizam sensores óticos operando 

na faixa termal-média de 4um (INPE, 2022). 

O desmatamento da RECM foi obtido por meio da plataforma web TerraBrasilis 

(Terrabrasilis,2022), desenvolvida pelo INPE. O TerraBrasilis é uma ferramenta de 

acesso, consulta, análise e compartilhamento de dados geográficos referentes ao 

monitoramento da vegetação nativa, seguindo os padrões internacionais de 

disseminação de dados geográficos e as especificações da Infraestrutura Nacional de 

Dados Espaciais (INDE). Tal plataforma é utilizada para disponibilizar informações 

geoespaciais confiáveis, atualizadas e de qualidade, visando subsidiar estudos, 

projetos e tomadas de decisão relacionadas ao meio ambiente 

Os dados meteorológicos da RECM são cruciais para estudos que visam 

entender a dinâmica climática e suas implicações no ambiente e na sociedade. Para 

isso, os seguintes dados foram obtidos a partir da base de dados do programa 

NASA/POWER (NASA - Prediction of Worldwide Energy Resources) (NASA, 2022): 

temperatura (°C), pressão de superfície (KPa), umidade específica (g/kg), umidade 

relativa (%), direção do vento (°), velocidade do vento (m/s), umidade da superfície do 

solo (%), precipitação (mm/dia) e irradiação (W/m²).  

Vale ressaltar que a plataforma NASA/POWER é caracterizada por sua 

abertura, cobertura espacial global e diferentes escalas temporais, incluindo mensal, 

diária e horária, o que a torna uma fonte essencial de informações para análises 

climáticas precisas e modelagem em diversas regiões do planeta. 

As informações acerca da altimetria da Resex em questão foram adquiridas por 

meio do portal Brasil Relevo, que é mantido pela renomada Empresa Brasileira de 

Pesquisa Agropecuária (Embrapa). Essa fonte de dados se baseia nos registros 

obtidos pela nave espacial americana durante a missão SRTM (Shuttle Radar 

Topography Mission), os quais permitem obter medidas altimétricas precisas para 

cada área de 90 metros por 90 metros do território nacional. (BRASIL, 2022) 

Para obter as informações do Índice de Vegetação por Diferença Normalizada 

(NDVI) da RECM, utilizou-se o Earth Explorer em conjunto com as cenas Landsat 8. 

Foram selecionadas imagens da RECM para o período entre os anos de 2009 a 2022. 
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As cenas foram disponibilizadas no formato tiff, com resolução de 16 bits, 

georreferenciadas e autorretificadas, sendo que cada imagem representa uma faixa 

do espectro captado pelo satélite. 

 

2.2.2 Procedimentos preparatórios 

 

Após a coleta dos dados, todas as informações referentes às variáveis foram 

organizadas em médias anuais e armazenadas em tabelas no formato xlsx. Para a 

realização da análise de comparação e interação entre as variáveis, tornou-se 

necessário normalizar os dados. 

A normalização é uma técnica que permite que as variáveis sejam ajustadas 

para terem uma média igual a zero e um desvio padrão igual a um, garantindo que 

todas as variáveis tenham o mesmo peso na análise e que a escala de valores seja 

uniforme. Essa técnica é essencial para obter uma escala comum, sem distorcer as 

diferenças nos intervalos de valores, facilitando a comparação e interpretação dos 

resultados. Para realizar a normalização dos dados, utilizou-se a seguinte fórmula 

(Molion, 2005): 

𝑧 =  
𝑥 − 𝜇

𝜎
                                                                          (24) 

Onde  𝑧  é a variável normalizada; 𝑥 é o valor anual da variável; 𝜇 é valor médio 

da variável no período, 𝜎 é o desvio padrão. 

 Os dados normalizados foram integrados em uma planilha no formato xlsx, 

visando a análise da correlação linear de Pearson das seguintes variáveis: focos de 

calor, desmatamento, temperatura, pressão de superfície, umidade específica, 

umidade relativa, direção do vento, velocidade do vento, umidade da superfície do 

solo, precipitação e irradiação.  

Os dados geoespaciais referentes às variáveis focos de calor (un), 

desmatamento (há), altitude do terreno (m), distância para cursos de água (m), 

distância de ramais internos (m), distância de rodovias (m) e Índice de Vegetação da 

Diferença Normalizada (NVDI) na RECM foram consolidados através do emprego do 

software livre Qgis 3.16.14, seguindo a malha da Reserva e sendo divididos em grades 

de tamanho 1 x 1 km. Posteriormente, foram salvos em arquivos no formato shapefile. 
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2.2.3 Avaliação das variáveis  

 

Com a base de dados preparada, utilizou-se o software Excel para elaborar e 

verificar o comportamento da série temporal de focos de calor e desmatamento, bem 

como para examinar a frequência dos focos de calor na RECM. 

Para estimar a densidade do padrão de distribuição dos focos de calor, 

empregou-se o software livre Qgis 3.16.14 e a ferramenta "Mapa de calor (Estimativa 

de densidade Kernel)" com um raio de 5 quilômetros. Essa análise foi realizada a partir 

das camadas pontuais reprojetadas para o sistema de coordenadas UTM, SIRGAS 

2000, EPSG: 4674, permitindo a geração de um mapa de proporção de incêndios 

dentro da área de estudo. 

O Modelo Espacial de Kernel é uma técnica estatística amplamente utilizada 

para estimar a distribuição espacial de eventos ou ocorrências, tais como os focos de 

calor, por meio da produção de uma superfície de densidade de pontos por unidade 

de área. Essa abordagem permite identificar aglomerações espaciais, também 

conhecidas como "áreas quentes" ou "hotspots" (FREIRE, 2012). A presença de uma 

"área quente" indica uma concentração de eventos em uma determinada região, 

podendo ser utilizada para identificar áreas de maior risco ou que necessitam de 

intervenções (SANT’ANA et al., 2014). A seguinte equação é utilizada para calcular a 

densidade de Kernel: 

𝑓ℎ(𝑥) =
1

𝑛ℎ
∑𝐾 (

𝑋 − 𝑋𝑖
ℎ

)

𝑛

𝑖=1

                                                     (25) 

Onde 

 𝐾 é a função de Kernel escolhida; 

 ℎ é o raio em torno do ponto analisado, 

 𝑋 é a posição central da célula do raster de saída,  

 𝑋𝑖 é a posição do ponto 𝑖 proveniente do centróide de cada polígono e 

𝑛 é o número total de pontos.  

A utilização do Modelo espacial de Kernel permite a geração de mapas de 

densidade de pontos, conhecidos como "áreas quentes" ou "hotspots", que são 
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indicativos de concentrações de eventos em uma distribuição espacial (FREIRE, 

2012; SANT'ANA et al., 2014; OLIVEIRA et al., 2017). 

Com o arquivo da base de dados normalizada, utilizou-se do software livre R 

Studio 4.2.3, juntamente com o pacote corrplot, para realizar a análise de correlação 

linear de Pearson. Essa técnica proporcionou a obtenção de uma matriz de 

correlação, cuja ordenação automática das variáveis contribuiu para a detecção de 

padrões ocultos entre elas. 

Ademais, para a análise das correlações geoespaciais, utilizou-se o software 

livre Geoda, o qual permitiu a visualização espacial das variáveis por meio de mapas, 

possibilitando a análise do padrão espacial do fenômeno em questão. Nesse sentido, 

optou-se pela utilização da matriz do tipo rainha com grande nível 1, visando garantir 

uma maior precisão e confiabilidade dos resultados obtidos. 

 

2.3 RESULTADOS E DISCUSSÃO 

 

2.3.1 Evolução de focos de calor  

A partir dos dados coletados, verificou-se um total de 12765 focos de calor na 

Reserva Extrativista Chico Mendes (RECM) em 2021, sendo este o período com o 

maior número de ocorrências registradas no estudo. Como ilustrado na Figura 10, 

observou-se uma tendência de aumento significativo no número de focos de calor ao 

longo dos anos, com um crescimento de 4432% quando comparado o período de 2002 

com o de 2021.  

 

Figura 10 - Evolução da taxa de focos de queimadas na Reserva Extrativista Chico Mendes entre 
os anos de 2002 -2021 

Fonte: INPE (2022) 
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A partir de 2015, houve uma tendência crescente, com uma leve queda em 

2018, mas com uma intensificação dos números de focos de calor na RECM, nunca 

presenciada na reserva. 

 Em 2005, ocorreram grandes incêndios florestais dentro da RECM, gerando 

preocupação entre a população e a gestão da reserva quanto à utilização e prevenção 

de queimadas (MASCARENHAS et al., 2018). Em 2008, foi realizada uma revisão do 

Plano de Utilização da Resex, incluindo medidas preventivas como a estipulação de 

períodos para queimadas, distância mínima para aceiros, criação de mutirões e 

responsabilização dos moradores pelas colocações de incêndios (BRASIL, 2008). 

Essa revisão no plano de utilização pode ter sido o elemento estabilizador do número 

de focos de calor dentro da Resex entre os períodos de 2008 e 2011. 

Com a eleição do governo Bolsonaro em 2018, a ideologia da política ambiental 

no Brasil sofreu mudanças significativas, com o enfraquecimento de órgãos de 

fiscalização e uma redução de ações contra atividades ilegais em terras públicas. Isso 

resultou em um aumento de 56% do desmatamento no bioma Amazônico entre 2018 

e 2022, a maioria em terras da União (GARRIDO, 2022). A tendência de aumento de 

focos de calor na RECM a partir de 2018 pode ser um reflexo dessas mudanças nas 

políticas públicas relacionadas à preservação ambiental. 

A análise da frequência dos focos de calor dentro da RESEX (Figura 11) revelou 

um padrão recorrente, com o mês de julho sendo o início do período de ocorrências, 

estendendo-se até novembro, e o mês de setembro sendo o pico de ocorrências em 

todos os anos analisados no estudo 
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A análise dos dados coletados sobre a evolução histórica dos focos de 

queimadas na revelou um aumento significativo no número de focos de calor, sendo 

o ano de 2021 o ano com o maior número de focos detectados. A figura 12 ilustra a 

quantidade de focos de calor detectados durante os anos de 2002 a 2021. 

 

 

 

Figura 11 - Frequência dos focos de queimada no RECM. (A) 2002; (B) 2006; (C) 
2010; (D) 2014; (E) 2018; e (F) 2021. 

Fonte: INEP (2022) 
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A análise dos dados indica que a região sul da RESEX é a que apresenta a 

maior ocorrência de focos de calor, sendo que atualmente é possível observar focos 

de queimadas em quase a totalidade da reserva. Além disso, a análise dos dados 

também revelou uma relação entre a proximidade das rodovias e o aumento dos focos 

de queimadas. As regiões ao sul da reserva são as mais próximas da BR-317, e 

nestas é onde a aglomeração de focos de calor é predominante historicamente. Já a 

região leste, que se encontra próxima da BR-364, também tem apresentado um 

aumento significativo no número de focos de calor ao longo dos anos. Por outro lado,a 

região norte da reserva, que não tem contato próximo com nenhuma das principais 

rodovias do estado do Acre, é a área com menor número de focos de calor. 

Figura 12 - Evolução da concentração de focos de calor na RECM entre 2002 a 2021. 
Fonte: INEP (2022) 
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Os resultados desta análise indicam que é necessário implementar medidas 

preventivas para o controle dos incêndios florestais na RESEX, bem como a 

monitoramento contínuo das áreas próximas às rodovias para identificar e prevenir a 

ocorrência de focos de calor. Além disso, é importante considerar as mudanças na 

política ambiental do país e sua possível influência no aumento dos focos de calor na 

reserva. 

A análise da evolução histórica dos focos de queimadas na Reserva Extrativista 

Chico Mendes (RECM) revela um crescente aumento preocupante, como evidenciado 

na Figura 6. A região sul da reserva apresenta uma utilização histórica elevada do 

fogo, com a presença de focos de queimadas em quase toda a área da RESEX. 

A relação entre a proximidade das rodovias e o aumento de queimadas também 

é evidente ao analisar a evolução dos focos de queimadas na RECM. As regiões ao 

sul da reserva estão próximas à BR-317 e apresentam uma aglomeração histórica de 

focos. Já a região leste, que se encontra próxima à BR-364, tem apresentado um 

crescente aumento no número de focos nos últimos anos. Por outro lado, a região 

norte da RECM, que não possui contato próximo com nenhuma das principais 

rodovias do estado do Acre, apresenta o menor número de focos de calor da RESEX. 

A construção de estradas é um elemento histórico do desmatamento e das 

queimadas na Amazônia (Carvalho et al., 2001). A consolidação de uma estrada reduz 

o custo de transporte, o que incentiva a intensificação das atividades agropecuárias e 

consequentemente, leva a transformações na paisagem, como o aumento de 

queimadas e desmatamento (Margulis, 2001). 

A Figura 13 apresenta a variação das classes de densidade dos focos de calor 

com os valores de desmatamento. A partir de 2014, houve um aumento significativo 

na densidade em todas as classes, com o ano de 2021 apresentando o maior número 

de focos registrados na RESEX até então, com um crescimento aproximado de 1780% 

em densidade em comparação com o ano de 2002. 
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2.3.2 Relação focos de calor e desmatamento 

A Figura 14 destaca a expansão contínua da área desmatada na RECM ao 

longo do tempo. Notavelmente, essa tendência de aumento da área desmatada está 

em consonância com a evolução temporal da quantidade de focos de calor dentro da 

RESEX. 
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Figura 13 - Variação das classes de densidade dos focos 
de calor na RECM entre 2002 a 2021.  

Fonte: INPE (2022) 

 

Figura 14 - Evolução do desmatamento na Reserva Extrativista Chico Mendes entre os anos de 
2002 -2021 

Fonte: TerraBrasilis (2022) e Acre (2010). 
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A Figura 15 ilustra a dinâmica temporal dos eventos de queimadas na Área 1 

da RECM, localizada nas coordenadas UTM Zona 19, latitude 10°22'39.04"S e 

longitude 68° 9'13.25"O. A imagem da Figura 14A, data de 10 de junho de 2003, 

apresenta a floresta original antes do registro do foco de incêndio no dia 02 de 

setembro de 2013 (dados do Programa Queimadas do INPE). A Figura 14B, data de 

28 de julho de 2013, evidencia a realização de desmatamento florestal antes da 

utilização do fogo como instrumento de limpeza. Já a Figura 14C, mostra a 

consolidação da área para as práticas agropecuárias. 

É importante destacar que a Amazônia tem apresentado crescentes níveis de 

desmatamento desde 1991, com as atividades de criação de gado, principalmente de 

médio e grande porte, sendo responsáveis por 70% do desmatamento na região 

(Fearnside, 2005). 

 

 

Figura 15 - Sequência de fatos ocorridos antes e depois do foco localizado nas coordenadas UTM 
Zona 19, latitude 10°22'39.04"S e Longitude 68° 9'13.25"O: A:12/1985; B. 6/2013; C. 7/2013; D. 04/2021. 

Fonte: Adaptado de Google Earth (2022). 
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De acordo com Maciel (2021), o declínio das atividades extrativistas como fonte 

de renda para as famílias dentro da RECM tem levado ao crescimento da pecuária 

como a principal atividade econômica, o que tem resultado em um aumento 

proporcional no desmatamento e queimadas na área. A Figura 16 ilustra como essa 

transformação de uso do solo tem ocorrido em diversos pontos da RESEX. 

  

 

Além disso, a análise da sobreposição entre desmatamento e densidade de 

focos de calor na RECM entre 2002 e 2021 (Figura 17) revela uma forte relação entre 

essas duas variáveis. 55% da área desmatada está presente na classe de densidade 

de focos de calor "Alta", 39% estão na classe "Média" e 6% está na classe "Baixa". 

Isso sugere que as regiões com maior densidade de focos de calor também são as 

regiões com as maiores áreas desmatadas 

. 

 

Figura 16 - Desmatamento da Reserva Extrativista Chico Mendes. 
Fonte: Terrabrasilis (2022). 
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A soma das áreas desmatadas presentes nas classes de densidade "Alta" e 

"Média" é de 10.572,33 km², o que representa 94% do desmatamento total na RESEX, 

reforçando a relação entre desmatamento e focos de calor. Além disso, é importante 

destacar que o desmatamento também leva à fragmentação da floresta, tornando-a 

menos densa, menos úmida e mais suscetível a incêndios florestais, facilitando o 

início de queimadas que avançam e marcam novos limites dentro da floresta 

(COPERTINO et. al, 2019). 
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Figura 18 - Sobreposição da densidade de focos de calor com o 
desmatamento da Reserva Extrativista Chico Mendes entre os anos de 2002 

a 2021. 
Fonte: Terrabrasilis (2022) e INPE (2022) 

Figura 17 - Relação entre área desmatada (km²) e classes de densidade de 
focos de calor na Reserva Extrativista Chico Mendes. 

Fonte: Terrabrasilis (2022) e INPE (2022). 
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2.3.3 Correlação de variáveis  

 A figura 19 apresenta a variação das variáveis da RESEX no recorte temporal 

utilizado no estudo de 2002 a 2021.   

 

A matriz de correlação linear de Pearson nos apresenta as análises realizadas 

nas variáveis. (Figura 20). Ao considerar os focos de calor como ponto de referência, 

a análise indica que a área de desmatamento apresentou uma correlação muito forte 

com esse fenômeno. Além disso, as variáveis temperatura e direção também 

demonstraram uma correlação forte com os focos de calor. Por outro lado, observou-

Figura 19 - Variação média das variáveis da RECM 
TerraBrasilis (2022), INPE (2022) e (NASA, 2022) 
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se uma correlação inversa entre os focos de calor e as variáveis umidade relativa, 

umidade do solo, precipitação e irradiação 

É interessante destacar que a pressão de superfície, umidade específica e 

vento não demonstraram correlação com os focos de calor. 

 

O cálculo do Índice de Moran foi realizado como parte da análise da variável 

focos de calor para cada ano. Os resultados correspondentes estão apresentados na 

Tabela 1, exibindo os valores do Índice de Moran obtidos para as variáveis analisadas. 

Figura 20 – Matriz de correlação de correlação linear de Pearson  
TerraBrasilis (2022), INPE (2022) e (NASA, 2022) 
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Tabela 1 - Resultados do Índice de Moran Global para as variáveis analisadas. 

VARIAVEIS  
Índice de Moran  

2002 2006 2010 2014 2018 2021 

Área desmatada  0.028 0.006 -0.039 -0.084 0.055 0.022 

Altitude  0.032 -0.133 0.138 0.302 0.174 0.151 

Distância de curso de água  0 0.05 0.003 -0.037 -0.008 -0.001 

Distância de ramais  -0.24 -0.169 -0.244 -0.392 -0.381 -0.382 

Distância de rodovias  -0.44 -0.366 -0.432 -0.556 -0.547 -0.478 

NVDI 0.032 -0.098 -0.169 -0.021 -0.153 -0.061 

 

Com base nos resultados obtidos, foi possível utilizar o Índice de Moran para 

detectar a presença de correlação espacial significativa entre a variável focos de 

calor e outras variáveis, como altitude, distância de ramais e rodovias. No entanto, 

ao contrário do índice de correlação de Pearson, o Índice de Moran não identificou 

uma correlação significativa entre os focos de calor e a área desmatada. 

. 

2.4 CONCLUSÃO 

 

A criação de Reservas Extrativistas pode ser considerada uma medida otimista 

e visionária para alcançar o equilíbrio entre o desenvolvimento humano e a 

conservação da biodiversidade. 

 Essas áreas foram criadas como resultado da luta dos povos extrativistas 

contra a expansão agropecuária, visando implementar um modelo de uso dos 

recursos naturais que fosse sustentável, ecológico e economicamente eficiente.  

No entanto, na situação da Reserva Extrativista Chico Mendes, o aumento do 

número de focos de calor dentro da reserva é um indicador de modificações nas 

atividades realizadas dentro da área, que vão de encontro aos princípios idealizados 

na concepção das RESEX. 

Foi constatado um aumento significativo na incidência de fogo em áreas da 

RECM, com concentração especialmente nas regiões sul e leste. Além disso, foi 

possível identificar uma relação entre a concentração de áreas desmatadas e a 

ocorrência de focos de calor. 

Ao analisar as correlações entre as variáveis precursoras do fogo, verificou-se, 

por meio do índice de correlação de Pearson, que a área desmatada apresentou uma 
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forte correlação com os focos de calor. Por outro lado, fatores como temperatura, 

direção do vento, umidade relativa, umidade do solo, precipitação e irradiação também 

apresentaram uma correlação significativa com a ocorrência de fogo na Resex. 

No que se refere à análise geoespacial, observou-se, por meio do Índice de 

Moran, a presença de correlação espacial significativa entre focos de calor e outras 

variáveis, como altitude, distância de ramais e rodovias dentro da RECM. 

Conclui-se, a partir dos resultados obtidos, que a área desmatada é um fator-

chave para a ocorrência de focos de calor, embora outras variáveis ambientais 

também possam ter um papel significativo nesse contexto. Os aumentos expressivos 

na incidência de focos de calor e desmatamento na Resex sugerem um aumento 

preocupante das atividades exploratórias dos recursos naturais em um ambiente que 

deveria ser um exemplo de utilização sustentável. 

Diante desse cenário, torna-se essencial realizar pesquisas adicionais para 

compreender as interações complexas entre as variáveis ambientais e implementar 

medidas efetivas de prevenção e controle de fogo na RECM e em outras regiões 

afetadas. A proteção dessas áreas, por meio da adoção de práticas sustentáveis, é 

fundamental para garantir a conservação da biodiversidade e o bem-estar das 

comunidades que dependem desses recursos naturais. 
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CAPÍTULO 3 - PREDIÇÃO DE ZONAS PROPENSAS A FOCOS DE CALOR NA 

RESERVA EXTRATIVISTA CHICO MENDES POR MEIO DE REDE NEURAL 

ARTIFICIAL 

 

3.1 INTRODUÇÃO  

 

A Amazônia abriga a maior floresta tropical contínua do mundo, 

desempenhando um papel crucial na regulação do clima global. No entanto, a ação 

do fogo nas florestas apresenta-se como um desafio urgente nesta região. Quando 

não controlado, o fogo exerce efeitos devastadores, acarretando danos significativos 

à biodiversidade, ao meio ambiente e às comunidades locais. No ano de 2022, o Brasil 

testemunhou uma perda alarmante de 16,3 milhões de hectares de floresta em virtude 

de atividades propulsoras do fogo (MONITCHELE, 2023), equivalente a áreas 

territoriais de países europeus como Portugal, Islândia e Inglaterra. 

Esses dados alarmantes evidenciam a magnitude dessa problemática e 

destacam a necessidade imperativa de implementar medidas efetivas para abordar os 

incêndios florestais na Amazônia. A destruição de uma extensão tão vasta de floresta 

tropical não apenas resulta em perdas irreparáveis em termos de biodiversidade, mas 

também contribui para o agravamento das mudanças climáticas em escala global. 

No estado do Acre, a Reserva Extrativista Chico Mendes é amplamente 

considerada a área mais ameaçada por desmatamento e queimadas (IMAZON, 2022), 

registrando sempre altos níveis de focos de calor com 12765 focos em 2022, 42% a 

mais do que em 2021 (INPE, 2023), resultando na perda de 9253 km² de floresta na 

reserva (TERRABRASILIS, 2023) 

Devido à magnitude dos impactos causados pelo fogo, é crucial encontrar 

métodos eficazes para prevenção e gerenciamento de áreas de risco. Com o avanço 

da capacidade computacional, a inteligência artificial tem sido amplamente utilizada 

como um modelo eficaz de predição em diversas áreas, como por exemplo preços 

madeireiros (LOPES et al, 2021), deslizamento de terra (LIU et al, 2022), classificação 

de espécies (PARQUE et al, 2022) e estimação de biomassa (MORADI et al, 2022). 

As Redes Neurais Artificiais (RNA’s) são formas de inteligência artificial que se 

baseiam em modelos neurobiológicos da rede neural humana. Elas são projetadas 
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para resolver problemas de aprendizado de máquina e imitar a capacidade da rede 

neural humana de aprender e tomar decisões com base em dados (HAYKIN, 2001), 

O objetivo deste capítulo é desenvolver uma Rede Neural Artificial capaz de 

prever a ocorrência de focos de calor na Reserva Extrativista Chico Mendes. Os 

principais objetivos desta pesquisa são: (1) prever as zonas de ocorrência de focos 

de calor em áreas da RECM e (2) avaliar o desempenho da Rede Neural Artificial a 

fim de obter um modelo confiável. 

A implementação dessa tecnologia proporcionará uma resposta mais rápida e 

eficiente diante de situações de emergência, contribuindo significativamente para a 

preservação da floresta e a proteção da biodiversidade local. Ao prever as zonas de 

ocorrência de focos de calor, será possível antecipar e adotar medidas preventivas, 

como o reforço da fiscalização e a implementação de estratégias de combate aos 

incêndios. 

 

3.2 MATERIAIS E MÉTODOS  

 

3.2.1 Coleta de dados 

 

Para a realização do presente estudo, foram empregados dados de entrada 

que abrangem um período temporal de cinco anos, compreendendo o intervalo de 

2016 a 2020, sendo que os dados relativos ao ano de 2020 foram empregados na 

validação do modelo proposto. Para a aquisição das informações necessárias, 

recorreu-se à obtenção de dados provenientes de fontes de acesso público 

disponíveis na internet.  

Os dados de focos de calor foram adquiridos a partir do Banco de Dados de 

Queimadas (BDQueimadas), gerenciado pelo Instituto Nacional de Pesquisas 

Espaciais (INPE).  O BDQueimadas é um repositório de informações históricas acerca 

de focos de queimada detectados por satélites, que conta atualmente com um acervo 

de aproximadamente 250 milhões de pontos, desde o ano de 1998. Considerou-se 

para as análises informação de dez satélites distintos, dentre os quais se destacam 

oito satélites polares (NOAA-18, NOAA-19, NOAA-20, METOP-B, METOP-C, NASA 

TERRA e AQUA) e dois satélites geoestacionários (GOES-16 e MSG-3). Cabe 
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ressaltar que todos esses satélites utilizam sensores ópticos operando na faixa termal-

média de 4um (INPE, 2022). 

O desmatamento foi obtido por meio da plataforma web TerraBrasilis 

(Terrabrasilis, 2022), desenvolvida pelo INPE. O TerraBrasilis é uma ferramenta de 

acesso, consulta, análise e compartilhamento de dados geográficos referentes ao 

monitoramento da vegetação nativa, seguindo os padrões internacionais de 

disseminação de dados geográficos e as especificações da Infraestrutura Nacional de 

Dados Espaciais (INDE). Tal plataforma é utilizada para disponibilizar informações 

geoespaciais confiáveis, atualizadas e de qualidade, visando subsidiar estudos, 

projetos e tomadas de decisão relacionadas ao meio ambiente 

Dados meteorológicos são cruciais para estudos que visam entender a 

dinâmica climática e suas implicações no ambiente e na sociedade. Para isso, os 

seguintes dados foram obtidos a partir da base de dados do programa Prediction of 

Worldwide Energy Resources – POWER (NASA, 2022): direção do vento em graus, 

precipitação (mm/dia), radiação (MJ/m²), temperatura (°C), umidade específica e 

umidade relativa (%).  

Os dados relativos às rodovias federais foram adquiridos por meio do portal 

oficial do Ministério dos Transportes. Por outro lado, as informações concernentes às 

rotas internas da RECM foram obtidas através do Instituto Chico Mendes de 

Conservação da Biodiversidade (ICMBio) (BRASIL 2022). 

Informações sobre topografia da Resex foram adquiridas por meio do portal 

Brasil Relevo, que é mantido pela renomada Empresa Brasileira de Pesquisa 

Agropecuária (Embrapa). Essa fonte de dados se baseia nos registros obtidos pela 

nave espacial americana durante a missão SRTM (Shuttle Radar Topography 

Mission), a qual permite obter medidas altimétricas precisas para cada área de 90 

metros por 90 metros do território nacional (BRASIL, 2022).. 
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Figura 21 - Médias anuais das variáveis metrológicas. 
Fonte: Própria (2023) 
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Figura 23 - Topografia da RECM 
Fonte: Própria (2023) 

 

Figura 22 - Ramais internos da RECM é rodovias próximas. 
Fonte: Própria (2023) 
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3.2.2 Preparação dos dados  

 

O modelo foi validado utilizando as informações de focos de calor como dados 

de saída. Para a construção da rede foi considerado os dados de entrada como sendo 

o período temporal de 4 anos (2016 a 2019), sendo os dados referentes ao ano de 

2020 utilizados para a validação do modelo. Para isto, os dados de entrada foram 

vetorizados e separados em conjuntos de treinamento e validação da RNA, e o modelo 

foi validado por comparação com os dados de 2020. 

Após a conclusão da fase de coleta de dados, dez variáveis foram organizadas 

para o processo de modelagem, sendo elas: altitude (m), distância de ramais da 

RECM (m), distância de rodovias para a RECM (m), desmatamento (ha), direção do 

vento (°), precipitação (mm/dia), radiação (MJ/m²), temperatura (°C), umidade 

específica e umidade relativa (%). As variáveis meteorológicas foram compiladas em 

médias anuais e registradas em tabelas no formato xlsx. Em seguida, os dados foram 

submetidos a uma abordagem de interpolação geoestatística utilizando o software 

QGIS 3.16.14, empregando o método de krigagem para estimar os valores das 

variáveis dentro da RECM.  

A krigagem é um método geoestatístico de interpolação que desempenha um 

papel fundamental na estimativa e predição de superfícies em problemas de análise 

espacial. Essa abordagem se baseia em uma estrutura de correlação espacial para 

fornecer estimativas não tendenciosas e de variâncias mínimas. Em outras palavras, 

a krigagem busca obter estimadores que sejam imparciais, ou seja, a diferença entre 

os valores estimados e os observados no mesmo local não deve ser nula. Além disso, 

a krigagem procura minimizar a variância desses estimadores, garantindo que eles 

possuam a menor variância possível entre todos os estimadores não tendenciosos 

disponíveis (DRUCK et al., 2004). 

As variáveis que abrangem as distâncias entre as rodovias e os ramais em 

relação aos focos de calor foram submetidas ao cálculo da distância euclidiana. Esse 

procedimento permitiu determinar a distância em metros entre os focos de calor e as 

rodovias, bem como os ramais. Para realizar o cálculo da distância euclidiana, 

empregou-se a ferramenta "r.grow.distance" disponível no software  QGIS 3.16.14. 

Uma técnica de transformação foi empregada na variável relacionada aos focos 

de calor, convertendo-a em uma variável binária (dummy). Os dados referentes aos 
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focos de calor foram categorizados como (0) para denotar a ausência de incêndios e 

(1) para indicar a presença de incêndios. Da mesma forma, essa abordagem foi 

aplicada à variável relacionada ao desmatamento. 

 Após a coleta e organização, todos os dados meteorológicos e informações 

concernentes à altitude, distâncias de ramais e rodovias, bem como dados sobre o 

desmatamento e focos de calor na RECM, foram submetidos a um processo de 

organização, resultando em uma grade interna com uma resolução de 1 x 1 km, 

compreendendo um total de 10.545 células (Figura 23). Estes dados foram 

armazenados em arquivos no formato shapefile. Essa abordagem de consolidação 

dos dados em uma grade regularizada visou otimizar a manipulação e análise das 

informações, permitindo uma representação mais clara e aprofundada dos padrões 

espaciais que prevalecem na RESEX. 

 

 

 3.2.3 Construção da RNA 

 

A construção da Rede Neural Artificial foi realizada utilizando o software R 

Studio 4.2.3 em conjunto com o pacote "keras" e o framework "TensorFlow", visando 

a implementação de um modelo do tipo MLP com algoritmo de backpropagation. 

O Keras é uma camada de abstração projetada para simplificar a construção e 

o treinamento de redes neurais, ao fornecer uma interface de alto nível que permite 

utilizar diferentes frameworks como backend para realizar as operações 

computacionais necessárias. Essa abordagem permite que os desenvolvedores se 

concentrem na lógica e na estrutura da rede neural, sem precisar lidar diretamente 

Figura 24 – Grade interna 1 x 1 km da Resex. 
Fonte: Própria (2023) 
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com a complexidade dos frameworks subjacentes. O Keras oferece ainda uma 

experiência mais intuitiva e produtiva, aproveitando as capacidades e otimização dos 

diversos frameworks disponíveis (PRAKASH; KANAGACHIDAMBARESAN, 2021).  

Já o TensorFlow, é um framework de código aberto desenvolvido pela Google, é 

amplamente utilizado para computação numérica e machine learning. Ele fornece uma 

biblioteca abrangente para construção de modelos de aprendizado de máquina e deep 

learning. O TensorFlow é altamente flexível e escalável, permitindo treinar e implantar 

modelos em diferentes plataformas, desde dispositivos móveis até clusters de 

servidores (PRAKASH; KANAGACHIDAMBARESAN, 2021). 

A combinação do Keras e TensorFlow proporcionou a criação de uma RNA 

robusta e eficiente para a análise dos dados, permitindo a exploração de recursos 

avançados de aprendizado de máquina e deep learning, além de oferecer uma 

interface simplificada para o desenvolvimento de modelos poderosos e escaláveis. 

O modelo construído consistiu em uma estrutura de camadas, incluindo uma 

camada de entrada, uma camada oculta e uma camada de saída. Cada camada é 

implementada como uma camada densa, em que todos os neurônios estão 

conectados aos neurônios da camada anterior. Para realizar o treinamento da rede 

neural através do método de backpropagation, foi empregado o algoritmo de 

otimização RMSProp, o qual permitiu ajustar os pesos da rede de forma iterativa, 

visando minimizar o erro médio quadrático entre as saídas classificadas e os rótulos 

verdadeiros. 

Para determinar a configuração mais adequada das camadas ocultas para a 

RNA, empregou-se uma abordagem de tentativa e erro. Foi utilizado a verificação do   

índice Kappa, e o intervalo de 1 a 20 neurônios artificias nas camadas ocultas, para a 

validação da escolha da melhor arquitetura de rede para a classificação final.  

O índice Kappa mede a concordância entre as previsões do modelo e os 

valores reais, levando em consideração a concordância esperada ao acaso 

(ROSENFIELD e FITZPATRICK, 1986). No estudo utilizou o pacote “irr” para o cálculo 

do Indice Kappa no software Rstudio. 

Para a construção e treinamento do modelo, o conjunto de dados foi dividido 

em duas partes, na proporção de 70% para treinamento e 30% para verificação 

(MITCHELL, 1997).  
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Observou-se um desequilíbrio entre o número de instâncias pertencentes à 

categoria "sem ocorrência de fogo" e o volume de dados relacionados à presença de 

fogo. Para mitigar essa disparidade, recorreu-se à aplicação de uma estratégia de 

balanceamento de classes. 

O balanceamento de classes desempenha um papel crucial quando 

enfrentamos um desequilíbrio considerável entre as diferentes categorias em um 

problema de classificação, ou seja, quando uma das classes apresenta um número 

muito superior de exemplos em relação à outra. Nesse contexto, o modelo de 

aprendizado de RNA tende a viés em favor da classe majoritária, resultando em um 

desempenho inferior na classificação da classe minoritária (KOTSIANTIs et al. 2006). 

Para abordar essa questão, optou-se pela técnica de super amostragem, na 

qual o número de instâncias da classe minoritária é aumentado durante a fase de 

treinamento da rede neural (TANTITHAMTHAVORN et al. 2018). Para implementar a 

super amostragem, utilizou-se o pacote "ROSE" no RStudio. 

 Após a seleção dos resultados obtidos nos intervalos de neurônios na camada 

oculta, realizada mediante a filtragem pela métrica do índice Kappa, a avaliação 

prosseguiu com a análise da precisão das redes neurais. Nesse estágio, foram 

empregados indicadores de desempenho essenciais, a saber: verdadeiro positivo, 

verdadeiro negativo, falso positivo e falso negativo. 

 

 O verdadeiro positivo (VP) é uma métrica que representa a quantidade 

de exemplos positivos corretamente classificados pela rede neural (Jain 

et al., 2000). Isto é, corresponde ao número de casos em que a rede 

previu corretamente a presença de uma determinada classe. Na RNA 

construída, tal métrica representa as células em que há a presença de 

focos de calor e a RNA alcançou o mesmo resultado.  

 O verdadeiro negativo (VN) é a métrica que representa a quantidade de 

exemplos negativos corretamente classificados pela rede neural (Jain et 

al., 2000). Refere-se ao número de casos em que a rede previu 

corretamente a ausência de uma determinada classe. Na RNA 

construída, está métrica representa as células em que não há a 

presença de focos de calor e a RNA chegou ao mesmo resultado. 
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 O falso positivo (FP) é a métrica que representa a quantidade de 

exemplos negativos erroneamente classificados como positivos pela 

rede neural (Jain et al., 2000). Corresponde ao número de casos em que 

a rede previu incorretamente a presença de uma determinada classe. 

Na RNA construída, esta métrica representa as células em que não há 

a presença de focos de calor, mas a RNA indicou erroneamente que há. 

 O falso negativo (FN) é a métrica que representa a quantidade de 

exemplos positivos erroneamente classificados como negativos pela 

rede neural (Jain et al., 2000). Significa o número de casos em que a 

rede previu incorretamente a ausência de uma determinada classe. Na 

RNA construída, está métrica representa as células em que há a 

presença de focos de calor, mas a RNA indicou erroneamente que não 

há. 

 

A incorporação desses indicadores métricos desempenha um papel 

fundamental na avaliação da precisão de redes neurais em tarefas de classificação 

(HASTIE et al., 2009). A partir dos resultados obtidos, esses indicadores são 

empregados para o cálculo de métricas essenciais, com o propósito de analisar e 

compreender o desempenho e a capacidade do modelo construído. As seguintes 

métricas foram examinadas no modelo desenvolvido: 

 

Acurácia: Indica a taxa de acertos do modelo em relação ao total de amostras 

avaliadas (LANGE, 1995). 

 

𝑉𝑃 + 𝑉𝑁

𝑉𝑃 + 𝑉𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                                   (26) 

 

 

 Predição Valores Verdadeiros: Proporção de casos classificados corretamente 

como negativos em relação ao total de casos classificados (LANGE, 1995). 

 

𝑉𝑁

𝑉𝑁 + 𝐹𝑁
                                                                           (27) 
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 Predição Valores Verdadeiros (PVV): Representa a proporção de casos 

classificados corretamente como positivos em relação ao total de casos classificados 

(SCHMIDHUBER, 2015). 

 

𝑉𝑃

𝑉𝑃 + 𝐹𝑃
                                                                            (28) 

 

 

 Sensibilidade: Determina a proporção de casos positivos que foram 

corretamente identificados pelo modelo. (DUDA et al., 2012). 

 

 

𝑉𝑃

𝑉𝑃 + 𝐹𝑁
                                                                          (29) 

 

 

 Especificidade: Refere-se à capacidade desses modelos em determinar se os 

valores de entrada são bons ou ruins, ou seja, se estão dentro ou fora da faixa 

desejada (GHAFFARI et al., 2021). 

 

𝑉𝑁

𝑉𝑁 + 𝐹𝑃
                                                                         (30) 

 

 

 

 F1- Score: é a média harmônica entre o recall e a precisão e fornece uma 

medida conservativa entre os erros tipos I e II, de modo que tanto falsos positivos 

quanto falsos negativos façam com que o valor dessa medida diminua (YAOHAO e 

MATION, 2018).  

 

 

2 ∗ (Predição Valores Verdadeiros ∗ Sensibilidade)

 Predição Valores Verdadeiros + Sensibilidade
                       (31) 
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 Área sob a curva (AUC): Avalia a capacidade discriminativa do modelo. e 

fornece uma medida geral da performance do modelo na distinção entre classes 

positivas e negativas (AHMED et al., 2020). 

Por fim, foi produzido um mapa de verificação que compara os focos de calor 

classificados pela RNA com os focos de calor identificados no ano de 2020. Essa 

representação visual permitiu uma avaliação visual da capacidade da rede construída 

em relação à detecção de focos de calor. 

 

3.3 RESULTADOS E DISCUSSÕES 

As RNAs desenvolvidas passaram por um processo de validação, no qual o 

desempenho foi avaliado utilizando o índice Kappa. Essa avaliação foi fundamental 

para a seleção da arquitetura mais adequada à classificação de cada composição. Os 

resultados dessa análise estão apresentados na Figura 24. 

 

Figura 25 - Resultados do Índice de Kappa para avaliação dos modelos 

Fonte: Própria (2023) 
 

Para avaliar o desempenho do modelo, foram utilizadas métricas apropriadas, 

cujos resultados são apresentados na Tabela X. Essas métricas fornecem 

informações sobre a eficácia do modelo na classificação dos focos de calor. 
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Tabela 2 – Verificação da RNA construída. 

Nº de neurônios  13 14 15 16 17 18 19 

Acurácia 0.64 0.71 0.75 0.71 0.66 0.65 0.62 

Valor Preditivo Negativo 0.61 0.70 0.70 0.72 0.69 0.67 0.65 

Valor Preditivo Positivo 0.67 0.72 0.80 0.69 0.63 0.62 0.59 

Sensibilidade 0.63 0.71 0.73 0.71 0.67 0.65 0.63 

Especificidade 0.65 0.71 0.78 0.70 0.65 0.64 0.61 

F1- Score 0.65 0.71 0.76 0.70 0.65 0.64 0.61 

Área sob a Curva ROC 0.62 0.70 0.74 0.69 0.65 0.64 0.60 

 
Fonte: Própria (2023) 

 

Ao comparar os diversos modelos avaliados, a RNA) com 15 neurônios na 

camada oculta (Figura 25) sobressaiu-se ao apresentar resultados superiores em 

relação aos demais modelos desenvolvidos. 

 

 

Figura 26 - Modelo da RNA construído. 
Fonte: Própria (2023) 

 
A análise de acurácia revelou que o modelo foi capaz de classificar 

corretamente 0.75 das células da grade da Resex, considerando o total de amostras 

avaliadas que foram 10.545 células. Essa taxa de acerto demonstra um desempenho 

superior em relação a uma classificação aleatória ou casual. Portanto, os resultados 

indicam que o modelo possui uma taxa satisfatória de precisão na sua capacidade de 

identificação. 
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 A sensibilidade atingiu um valor aproximado de 0.73. Além disso, a 

especificidade, obteve um resultado de cerca de 0.78. Esses valores indicam que o 

modelo apresenta uma capacidade na ordem de 70% de identificar corretamente tanto 

os casos positivos quanto os negativos. O que é confirmado através dos valores de 

PVV de aproximadamente 0.80 e PVN de 0.70. Esses resultados evidenciam uma 

capacidade moderada do modelo em realizar previsões precisas tanto para casos 

positivos quanto negativos. 

O AUC tem um valor próximo de 0.73, sugerindo, portanto, que o modelo possui 

uma boa capacidade de distinguir entre as classes positivas e negativas, no caso 

deste estudo, a distinção entre células da grade com foco e sem foco. Assim, com 

base nas métricas analisadas, os resultados obtidos evidenciam um desempenho 

considerável do modelo na tarefa de previsão de focos de calor. No entanto, também 

se observa a possibilidade de aprimorar sua capacidade de previsão por meio de 

refinamentos. 

Após análise das métricas foi gerado um mapa de distribuição dos focos de 

calor na RECM a partir dos dados de entrada no modelo de modo a facilitar a 

visualização dos resultados obtidos. A Figura 26, ilustra a comparação entre os focos 

de calor observados na RECM para o ano de 2020 levando em consideração os 

valores previstos pelo modelo de RNA. Foi possível observar que, embora o modelo 

tenha previsto em torno de 70% de precisão a concentração de focos, algumas 

lacunas ou áreas permaneceram sem informação, porém foi possível identificar alguns 

padrões de localização dos focos. Isso indica que o modelo possui potencial para ser 

aprimorado, a fim de preencher as lacunas de células com focos não identificados. 
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Figura 27 - Comparação entre os focos de calor observados na Resex em 2020 e os valores previstos 
pelo modelo de RNA. 

                                                           Fonte: Própria (2023) 
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Do exposto, podemos dizer que o modelo apresenta uma correspondência 

satisfatória com os dados reais, embora algumas discrepâncias sejam evidentes. 

Essas discrepâncias podem ser atribuídas a vários fatores, como a complexidade do 

fenômeno em estudo, a disponibilidade e qualidade dos dados utilizados no 

treinamento e a própria natureza estocástica dos focos de calor. 

Melhorias podem ser exploradas em diferentes aspectos do modelo, como por 

exemplo o ajuste de parâmetros, a inclusão de novos dados ou a utilização de 

algoritmos de aprendizado mais avançados. Ao buscar otimizar o desempenho do 

modelo, é possível alcançar resultados ainda mais precisos e confiáveis na previsão 

de focos de calor. Portanto, é recomendado realizar análises adicionais, investigar os 

pontos fracos identificados e aplicar estratégias de aprimoramento para elevar a 

capacidade preditiva do modelo a um nível ainda mais elevado. Essa abordagem 

permitirá maximizar a utilidade e a eficácia do modelo na identificação e prevenção de 

focos de calor. 

Além disso, estratégias de otimização do modelo, como a seleção de diferentes 

arquiteturas de rede, o ajuste de hiperparâmetros e a aplicação de técnicas avançadas 

de aprendizado de máquina, podem ser utilizadas para melhorar a capacidade 

preditiva e o desempenho geral do modelo. 

Embora haja espaço para aprimoramentos, os resultados obtidos até o 

momento indicam que o modelo de RNA possui uma base sólida e demonstra 

potencial para auxiliar no monitoramento de focos de calor em áreas de proteção 

ambiental. O contínuo desenvolvimento e refinamento desse modelo podem contribuir 

significativamente para a proteção e preservação de áreas naturais ameaçadas por 

fogos. 

 

3.4 CONCLUSÃO 

 

A aplicação de um modelo de Rede Neural Artificial na previsão de focos de 

calor dentro da Reserva Extrativista Chico Mendes revelou resultados promissores no 

que se refere à identificação das áreas propícias à ocorrência de focos. Contudo, há 

margem para aprimorar sua precisão mediante a incorporação de novas técnicas e 

abordagens. 
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Os resultados obtidos evidenciam a capacidade da Rede Neural Artificial em 

capturar padrões e identificar, de forma aproximada, a localização dos focos de calor. 

Isso indica o potencial do modelo, o qual pode ser otimizado por meio da 

implementação de técnicas complementares para preencher lacunas e fortalecer sua 

capacidade preditiva em áreas específicas. 

Em relação a áreas de conservação ambiental com foco na vida extrativista, 

seria benéfico considerar a inclusão de variáveis que transcendam o escopo 

tradicional de dados climáticos. Por exemplo, a concentração de seringais dentro da 

Resex e as variações econômicas dos produtos provenientes das atividades 

extrativistas. Além disso, é recomendado investigar a aplicabilidade do modelo em 

outras regiões e períodos, com o intuito de avaliar sua capacidade de generalização 

e adaptabilidade a contextos diversos. Isso permitirá uma compreensão mais 

abrangente dos padrões de ocorrência de focos de calor em diferentes áreas 

protegidas, bem como a identificação de fatores específicos que influenciam a 

previsão nesses contextos. 

É fundamental salientar que a previsão de focos de calor é um desafio 

complexo, envolvendo uma interação complexa de fatores diversos. Assim, o contínuo 

aprimoramento do modelo de Rede Neural Artificial deve ser acompanhado pela 

coleta e disponibilização de dados mais abrangentes e atualizados, assim como por 

estudos complementares que contribuam para um melhor entendimento do fenômeno 

do fogo na Resex. 

Em síntese, os resultados obtidos até o momento indicam que a aplicação de 

um modelo de Rede Neural Artificial para classificação de focos de calor na Reserva 

Extrativista Chico Mendes possui um potencial promissor. Mediante a adoção de 

novas técnicas, estratégias de otimização e o constante aprimoramento do modelo, 

será possível alcançar uma maior precisão na identificação das áreas com maior risco 

de fogo, promovendo assim a preservação e a gestão sustentável dessas áreas 

naturais preciosas. 

 

CONSIDERAÇÔES FINAIS  

 

O Banco de Dados de Queimadas do Instituto Nacional de Pesquisas Espaciais 

(INPE) desempenhou um papel fundamental nos estudos conduzidos, fornecendo 
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informações essenciais. Através desse banco de dados, tornou-se possível realizar 

análises temporais e espaciais das ocorrências de fogo na Reserva Extrativista Chico 

Mendes. Adicionalmente, foi viável desenvolver uma Rede Neural Artificial capaz de 

classificar a localização dos focos de calor nas áreas da Reserva. 

Apesar do papel crucial que as reservas extrativistas desempenham na 

preservação ambiental e cultural, elas não estão isentas das pressões decorrentes da 

exploração predatória. Portanto, a criação e disseminação de estratégias de 

monitoramento se tornam fundamentais para assegurar que as áreas protegidas 

continuem a desempenhar sua função de mitigar o desmatamento. Isso deve incluir a 

implementação de medidas de proteção ambiental em conjunto com outras políticas 

direcionadas ao meio ambiente. É crucial vincular o fortalecimento das áreas 

protegidas e à valorização das comunidades extrativistas. 

Os avanços significativos na área de inteligência artificial têm proporcionado 

um progresso notável em várias áreas, incluindo o monitoramento cada vez mais 

aprimorado e preciso de queimadas e incêndios florestais. No entanto, fica evidente 

que o desafio central para a redução das ocorrências de fogo em ambientes de 

conservação depende do comprometimento dos gestores em aproveitar integralmente 

essas avançadas ferramentas tecnológicas disponíveis, a fim de fortalecer as 

estratégias de contenção das incidências de fogo. 
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